

WHAT IS A GOOD FORECAST?

Whether we look at how JDM researchers define good forecasting,^{1, 2} how forecasting researchers formally evaluate forecast quality,^{3, 4} or how professional forecasters create models,⁵ there is a clear consensus among experts: Good forecasts minimize continuous prediction error.

But how do laypeople evaluate forecasts?

Because people tend to (i) evaluate prediction error in problematic ways^{6, 7} & (ii) compress continuous information into crude categories,⁸ we suspect they will instead particularly prize categorical correctness.

BASIC EFFECT: ELECTION STUDY

N = 164 (MTurk), aspredicted: YPT_JVN

Two hypothetical election forecasts:

Pundit A predicted: Smith will win by 9% Pundit B predicted: Jones will win by 1%

Now suppose that Smith wins by 3%

How would you evaluate these predictions?

Finding: People prefer the winner-picker.

The Pick-the-Winner-Picker Heuristic: Preference for Categorically Correct Forecasts Jay Naborn and Jonathan E. Bogard contact: j.naborn@wustl.edu

Experts: Good forecasts minimize continuous error. We find: Laypeople prefer categorically correct forecasts to those that minimize continuous error.

An example from politics: "Winner-picker": Smith will win by 9%. "Error-minimizer": Jones will win by 1%. Reality: Smith wins by 3%. **Result: People pick the winner-picker.**

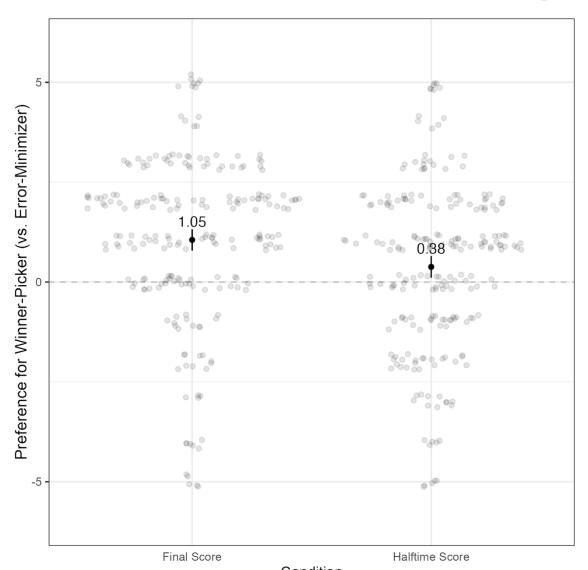
We manipulated the importance of the categorical outcome (winning team) relative to the continuous outcome (margin).

Fan A: Wildcats by 10 at full time [halftime] Fan B: Bulldogs by 3 at full time [halftime] In fact, Wildcats by 2 at full time [halftime]

How would you evaluate these predictions?

Finding: When we made winning less important, people preferred the winnerpicker less. People evaluate forecasts primarily by accuracy on the most important outcome (categorical or continuous), driving use of the heuristic.

IS THE PTWP HEURISTIC A MISTAKE? In a simulated tournament using a dataset of professional NFL forecasts,⁹ winner-pickers were (~4%) less likely than error-minimizers to pick the winner in the next game.


REFERENCES Dawes, R. M. (1971). A Case Study of Graduate Admissions: Application of Three Principles of Human Decision Making. American Psychologist, 26(2), 180-188.

Have Diminishing Sensitivity to Forecasting Error. Psychological Science, 31(10), 1302–1314. ²Meehl, P. E. (1954). Clinical Versus Statistical Prediction ⁷Einhorn, H. J. (1986). Accepting Error to Make Less Error. A Theoretical Analysis and a Review of the Evidence. Journal of Personality Assessment, 50(3), 387–395. University of Minnesota Press. ^aFisher, M., & Keil, F. C. (2018). The Binary Bias: A ³Brier, G. W. (1950). Verification of Forecasts Expressed Systematic Distortion in the Integration of Information. Terms of Probability. *Monthly Weather Review*, 78(1), 1–3 Psychological Science, 29(11), 1846–1858. ⁴Jose, V. R. R., Nau, R. F., & Winkler, R. L. (2009). ⁹Godes, D. (2023). Will the Truth Free Us from Sensitivity to Distance and Baseline Distributions in Misinformation? SSRN. Forecast Evaluation. Management Science, 55(4), 582https://doi.org/10.2139/ssrn.4606265

⁵Morris, G. E. (2024). How 538's Pollster Ratings Work. ABC News. https://abcnews.go.com/538/538s-pollsterratings-work/story?id=105398138

MECHANISM TEST: HALFTIME STUDY

N = 443 (MTurk), aspredicted: VX3_3DL

b = -.68, SE = .20, t(441) = -3.40, p < .001

poster template: https://osf.io/ayjzg/smithar3@appstate.edu

⁶Dietvorst, B. J., & Bharti, S. (2020). People Reject

Algorithms in Uncertain Decision Domains Because They