
Bayesian Persuasion: Evaluating a Receiver's Decision-Making Strategy Under Persuasion Contexts

Emily N. Line, Meichai Chen, Melih Bastopcu, Raj Kiriti Velicheti, & Michel Regenwetter

Research Questions

- What decision strategies do people use?
- 2. Does the presence of a sender affect a receiver's decision strategy, and how?
- 3. Would knowledge of the sender's utility affect a receiver's decision strategy, and how?

Probability Strategies

Bayesian	Uses Bayes
Prior Only	Selects mo based on p
Misinterpretation of Likelihoods	Ignores the revealed ev source of ir
Skepticism	Adjusts the Theorem de results.
	Utility Strat
Evpostod Utility	Maximizaa

Expected Utility	Maximizes
	Maximizes
	affected by

Experiment Phases & Example Vignette

Phase 1 (No Sender)

Your car might need a part replaced. You run a test to help determine if you should replace the part.

P(Broken): 60%

P(Positive Test | Broken): 65% P(Positive Test | Not Broken): 40%

Phase 2 (Sender Included) Your Payment Outcomes True Answer Now, a mechanic strategically selects a Not Broken Broken test in hopes of convincing you to \$0.35 replace the part. Payoff table shows what you gain if you decide accurately. \$0 \$0.35

Phase 3 (Sender's Utility Included)

Now, another payoff table shows what mechanic gains if they persuade you.

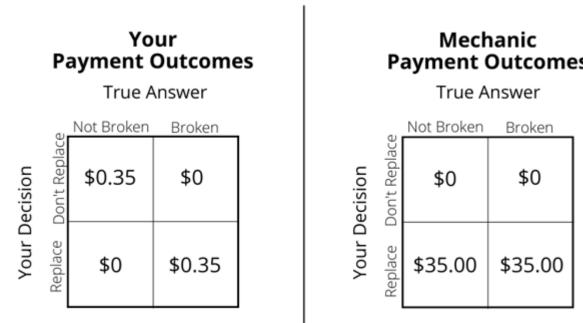
es' Theorem.

ost likely outcome only orior.

e prior and treats newly vidence as the sole nformation.

e numerator of Bayes' downward for + test

tegies


expected payoff (EU).

subjective EU, which is

y spite and sender EU.

Joint Predictions Across Stimuli

3 example stimu with test outcom

P(A):60%P(+ | A): 65% $P(+ | Not A): 40^{\circ}$ P(A): 20%

P(+|A):76%P(+ | Not A): 1%

P(A): 30%P(+ | A): 84%

P(+ | Not A): 449

Order-Constrained Analyses²

Majority (Supermajority) Specification Deterministic (fixed) preference within an individual. Observed choices are error-prone (noisy). Upper bound of 50% (10%) on error rates.

Mixture Specification Probabilistic (variable/uncertain) preference within an individual. Observed choices are errorfree. The probability distribution over permissible preferences (within and/or across strategies) is unconstrained.

References

Acknowledgements

neuline2@illinois.edu

uli 1e +	Bayes	Prior Only	Mis. Of Likelihood
)%	"A"	"A"	"A"
) %	"A"	"Not A"	"A"
) 2 %	"Not A"	"Not A"	"A"