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Background

Algorithm Aversion
Individuals’ general preference for interacting with humans
rather than algorithms manmud et al., 2022)

= Versus: Natural conversational style of contemporary
chatbots (e.g., OpenAl’'s ChatGPT, Google's Gemini)

Explanation
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Increases transparency of the

algorithmic judgment and m&@‘p

decision-making process

(Papamichail, 2003; van Dongen & van Maanen, 2013)

= Advice from explanatory algorithms is weighted more

StrOngly (Gondl et al., 2006; Goodwin et al., 2013)

I n teraCtIVIty Why did you Because of your

recommend X purchase of X

Enhances trUSt Callbratlon over Y? last week.
and satisfies users’ desire

fOr COntrOI (e.g., Westphal et al., 2023)

= More control over the behavior of an algorithm increases
USGFS’ Wi||ingneSS tO rely on |tS OUtpUt (Dietvorst et al., 2018; van Dongen &

van Maanen, 2013)

Conversational User Interfaces ¥
By providing information upon N |
re q U eSt’ p arti es canre d uce chararg e e e o Bucges oy

ChatGPT car ake mistakes. Consider check g important information,

(van Dongen & van Maanen, 2013)

= Greater salience of influencing algorithms’ behavior for
actively requested than passively provided explanations

= No trust building through explanation if the opportunity to
Interact Is not used to solicit an explanation (coodwin etal., 2013)

Method Results

Design Mean WOA per Group
2 (explanation: provided vs. not provided) x 2
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N =472 university students (313 female, 154 male) j - - l
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10 Ferm| prObIemS (| e. ’ Nnu mencal Judg ment tas kS) Note. Error bars show the 95% CI. Outliers of WOA are excluded based on Tukey’s (1977) fences.

*p <.05,**p<.01, ** p<.001, two-sided. Adapted from Rebholz et al. (2024). CC BY 4.0.
= Example: How many soccer pitches would It take to I
accommodate all the inhabitants of Germany? Distribution of WOA per Group
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(Sniezek & Buckley, 1995) -

= Advice: Pre-generated output from ChatGPT (gpt-3.5-
turbo model with temperature = 0) ; —

WOA

Note. Gaussian kernel density plots with the bandwidth chosen according to Silverman’s (1986) rule of thumb. Outliers of
WOA are excluded based on Tukey’s (1977) fences. From Rebholz et al. (2024). CC BY 4.0.

Dependent Variable
Welight of Advice (WOA) (Harvey & Fischer, 1097) Deviations from Mean WOA per ltem

Future Research

011000 10 001
10000 001011
010011 01010
10101010 10

Multimodal Reasoning

Visual explanations improve
users’ objective understanding
of complex algorithms

(Cheng et al., 2019)
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Limitations : , |
Interactivity .

Limited to pressing a button for more information I T R T 2 T B

Item Number
Your iritial estimate was: 1. Your initial estimate was: 1. Note. Error bars show the 95% CI. The underlying extended multilevel model includes participant and item random slopes

- ) ) Below is ChatGPT’s response: .
Below is ChatGPT’s response: i of explanation. From Rebholz et al. (2024). CC BY 4.0.

How many cups of coffee are drunk per day in Tubingen?

How many cups of coffee are drunk per day in Tubingen?

CUDS. 212,520 cups. O P . .
Implications

Please explain how you arrived at this estimate.

ey mtn e o Theory of Machine Theory of Machine 2.0

Please give your final estimate now. Based on the population of Tubingen and the assumption that 83% of Germans 0 & & (I—Ogg, 2022) (RebhOIZ, 2024)
Only whole numbers with thousands points are allowed. drink coffee regularly, | would estimate that around 75,900 coffee drinkers live in
Tubingen. If we assume that the average coffee drinker drinks 2.8 cups per day,
Your final estimate: this would mean that a total of around 212,520 cups of coffee are consumed in
] Tubingen every day.
Please give your final estimate now.
Only whole numbers with thousands points are allowed.
Your final estimate:
]
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