

INTRODUCTION

Visual attention causally influences choices.

• An increase in the relative attention received by a desirable option increases the frequency with which it is chosen [1–3].

We do not know if visual attention influences choices between losses in the same way that it influences choices between gains.

- Attention to appetitive snacks increases the tendency to overweight the value of fixated options [4–7].
- Attention to the positive outcome of a gamble increases with its probability and amount [8].

How does visual attention impact choices between negative-outcome lotteries?

- H1: Attentional over-weighting of fixated option. \uparrow relative attention to option \Rightarrow \downarrow choice frequency.
- H2: Attentional under-weighting of fixated option. \uparrow rel. attention \Rightarrow \uparrow choice freq.

EYE-TRACKING TASK

- N = 25. Binary choices between lotteries.
- 400 trials, 2 blocks, 2 conditions:
 - Gain: positive-outcome lotteries.
 - Loss: negative-outcome lotteries.

CONTACT INFO

Lab www.rnl.caltech.edu Web www.brendeneum.com Email beum@caltech.edu

ATTENTIONAL OVER-WEIGHTING IN GAINS, **ATTENTIONAL UNDER-WEIGHTING IN LOSSÉS BRENDEN EUM,** STEPHEN GONZALEZ, AND ANTONIO RANGEL

RESULTS

Model Predictions If there is attentional over-weighting in loss choices ($\theta_{loss} < 1$), then an increase in the relative attention received by an option should decrease the frequency with which it is chosen.

Observed Data Instead, we find that an increase in the relative attention received by an option still increases the frequency with which it is chosen, just as in gains.

aDDM Observed data is explained by the aDDM with attentional under-weighting of the fixated option in choices between losses ($\theta_{loss} > 1$) and attentional overweighting in choices between gains ($\theta_{gain} < 1$).

Hypotheses

H1: Over-weighting in loss; \uparrow rel. attention $\Rightarrow \downarrow$ choice freq H2: Under-weighting in loss; \uparrow rel. attention \Rightarrow \uparrow choice free

1. (Results, Observed Data)	UNSUPPORTED
eq. (Results, aDDM)	SUPPORTED

MODEL

Attentional Drift-Diffusion-Model (aDDM)

- fixed at ± 1 .

- Drift rate: d

DISCUSSION

Choices and response times can be captured by an aDDM using an attentional bias parameter that over-weights the value of the fixated option in gains ($\theta < 1$) and under-weights this value in losses ($\theta > 1$). Potential explanations:

Next steps:

REFERENCES

1.	K. C. Ar
2.	R. Bhatn
3.	G. Tavai (2017).
4.	I. Krajbi 1298 (20
5.	A. W. T Mohr. N
6.	S. M. Sr 147, 181
7.	S. M. Sn
8.	S. Fiedle

Evidence_t = Evidence_{t-1} + μ_t + ϵ_t

• Evidence accumulation to decision bounds

• Fixated left: $\mu_t = d(V_L - \theta V_R)$ • Fixated right: $\mu_t = d(\theta V_L - V_R)$ • Noise: $\epsilon_t \sim N(0, \sigma^2)$ • Attentional over-weighting: $\theta < 1$ • Attentional under-weighting: $\theta > 1$

> • There is a fundamental difference in the role of attention in gains versus losses.

> • Subj. may be treating the task as a perceptual task by counting green dots in gains, white dots in losses, and making value comparisons based on these counts. Then attentional over-weighting explains all results.

- rmel, A. Beaumel, A. Rangel, Judgment and Decision Making 403 (2008). nagar, J. Orquin, Journal of Experimental Psychology: General 65–2283 (2022).
- res, P. Perona, A. Rangel, Frontiers in Neuroscience 11, 468
- ich, C. Armel, A. Rangel, Nature Neuroscience 13, 1292-)10).
- Thomas, F. Molter, I. Krajbich, H. R. Heekeren, P. N. C. *Nature Human Behaviour* **3**, 625–635 (2019).
- nith, I. Krajbich, Journal of Experimental Psychology: General 10–1826 (2018).
- mith, I. Krajbich, *Psychological Science* **30**, 116–128 (2019). er, A. Glöckner, Frontiers in Psychology 3 (2012).