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Optimal Stopping Task Conclusion

e We develop a novel optimal stopping task
to investigate the impact of various factors on
stopping decisions in sequential search
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In many naturalistic situations such as deciding Your choice was Wrong.

You chose Box 1 with a value of 50.

(c) Outcome Feedback

on an apartment to rent or selecting a life part-
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ner, people can explore options before making a
selection. We investigate the following:

How do feedback and knowledge of the dis-
tribution of options values affect learning
in sequential search?”
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e We find that human participants and IBL model
agents have lower thresholds (stop earlier)
than optimal
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Your choice was Correct.
You chose Box 3 with a value of 75.
The maximum value box was Box 3 with a value of 75.

(d) Detailed Feedback

Frequency (Per 1000 Boxes)
o

o

Box 10f 10 e We find evidence that people learn more

(choose the best option) when provided
feedback relative to no feedback, and when they
do not know the distribution relative to knowing
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How do people deviate from optimal based
on these factors, and can this be modeled with a

Which box value is most likely to occur?

. SRS J \SelectJ You chose Box 2 with a value of 62.

(e) No Feedback

(a) Distribution Known (b) Stopping Decision

cognitive model of decisions from experience’

Goals:

e Future Work: Investigate additional factors
(variability of sequence length, crowd decisions)

Cognitive Model: Instance-Based Learning Model

® Determine how factors influence decisions and
learning within a sequential search task
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e Past instances are retrieved based on similarity
to the current situation, frequency, and recency

o A blended value (BV) is calculated based on the
utility of the retrieved instances

Introduction

Action
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Exploration Judgment

Choice

e Previous work indicates that people are

e 'The agent chooses option with the highest BV

suboptimal at stopping such exploration phase
and often stop earlier than optimal |1, 5

Execution

State Action Utility
Value Boxes Remaining {Select, Pass} {0, 1}

Table 1: Instance Structure

e Recent work shows that people can learn to stop

at the optimal time with experience [3] Figure 2: Instance-Based Learning Theory [4]

e We investigate factors that may influence learning

in stopping decisions and extend our previous Results
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Contact Information
Problem

Decision Maker 4 Human -4 IBL Model 4 Optimal e Email: ebugbee@cmu.edu

Model Agents

e Simulate 300 IBL model and optimal agents
completing the same task

Decision Maker 4 Human -4 IBL Model -4 Optimal

Figure 3: Average Reward for Human, IBL Model,
and Optimal Agents for Problems 1 through 50

Figure 4: Threshold Values for Human, IBL Model,
and Optimal Agents for Positions 1 through 10

e Lab Website: cmu.edu/ddmlab
e Personal Website: erinbugbee.com
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