Does Unpacking the Carbon Footprint Affect Travel Choices?

reij@zhaw.ch

Introduction & Research Questions

What is the percentage of *mobility-related* CO_2 emissions? Such estimates are not only imprecise, but also dependent on how such "categorical events" are described. For example, support theory (Tversky & Koehler, 1994) assumes that the estimate for a categorical event (e.g., mobility-related CO_2 emissions) is higher when it is "unpacked" (implicit subadditivity), that is, when its possible subcategories are also described (e.g., CO_2 emissions from flights, trains, and other forms of mobility). Moreover, the estimate for an unpacked event is higher if it is not evaluated as a whole, but if each subcategory is evaluated separately and then added up (explicit subadditivity).

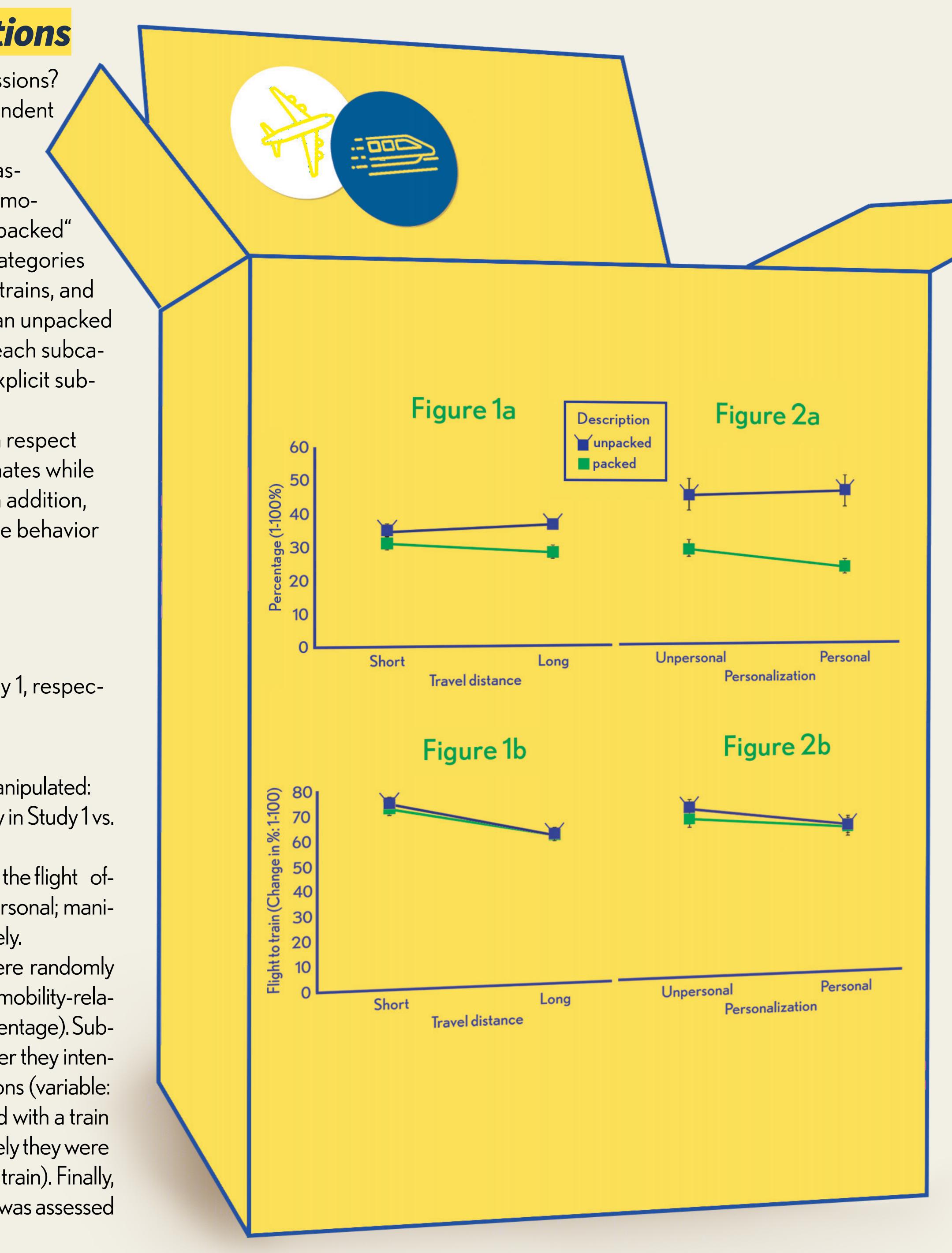
These two assumptions are tested in two studies with respect to mobility-related CO_2 emission percentange estimates while manipulating other variables (e.g., travel distance). In addition, it is tested whether these estimates can also influence behavior (switching from flight to train).

Method

Observers (O's):

We tested 462 O's (M_{age} = 24.0, SD_{age} = 4.0) in Study 1, respectively 231 O's (M_{age} = 25.5, SD_{age} = 4.2) in Study 2.

Procedure & Design:


AMS 13:35

O's were offered a flight, with the following variables manipulated:

- description: packed vs. unpacked (implicit subadditivity in Study 1vs. explicit subadditivity in Study 2).
- travel distance in Study 1 (short vs. long; manipulated in the flight offer) and personalization in Study 2 (unpersonal vs. personal; mani-

pulated in the description), respectively. After O's had seen the flight they were randomly assigned to, they had to estimate mobility-related CO₂ emissions (variable: percentage). Subsequently they were asked whether they intended to change their CO_2 emissions (variable: intention) before being presented with a train offer and asked to indicate how likely they were to switch to the train (variable: flight to train). Finally, their mobility behavior in the last 5 years was assessed (variable: personal CO_2 footprint).

Authors: Swen J. Kühne, Ester Reijnen, & Sabine M. Bremermann-Reiser, Zurich University of Applied Sciences

F(1, 456) = 22.36, p < .001.That is, the longer the travel distance, the less likely O's were to switch to the train (see Figures 1b & 2b). However, in both Study 1 and Study 2 we found that intention to switch from flight to train was positively correlated with the intention to reduce CO_2 emissions (both p <.001) and negatively correlated with the personal CO_2 footprint (also both *p* <.001).

Discussion

Despite the fact that O's estimated the probability of unpacked events to be higher, usually even much higher than the actual values, this did not translate into a behavior change. It is assumed that in terms of the probability estimates, the underlying intent such as "to address the climate crisis CO_2 emissions must be reduced" is to be made clearer so that O's can see why they should switch from flight to train.

Tversky, A., & Koehler, D. J. (1994). Support theory: a nonextensional representation of subjective probability. *Psychological review*, 101(4), 547.

Results

Regarding CO_2 emission percentage estimates, in both studies we found only a significant main effect of description (implicit subadditivity in Study 1: F(1, 458) = 9.99, p < .01, and explicit subadditivity inStudy 2: F(1, 227) = 32.74, p < .001, see Figures 1a & 2a).

In terms of behavior change, only Study 1 showed a significant main effect of travel distance,

References