How do Cognitive Processes regulate the Wisdom and Madness of Crowds?

A Registered Report Erik Kommol* & Christopher Lettl Institute for Strategy, Technology and Organization

SUMMARY

Understanding the conditions under which human collectives act wisely or mad has been a central focus of behavioral research. While there is a common understanding that overreliance on social information can result in maladaptive herding behavior (Frey & van de Rijt, 2020; Lee et al., 2015; Lorenz et al., 2011), there is **strong evidence** for **cognitive benefits** of **grouping** and interaction (Krause et al., 2002; Krause et al., 2010). We propose that **cognitive systems** (Sloman, 1996) involved in decision-making processes can partially explain preceding contradictory findings and test whether **individuals under** an **intuitive processing** mode (System) 1) are more sensitive to low quality social information, which decreases their accuracy compared to individuals under an analytical processing mode (System 2). Results from a **pilot experiment** (n=80) indicate that intuitive processing leads to a higher adaptation toward social information, a decrease in individual accuracy and that these associations are **moderated by** social **information quality**. We will test our hypotheses with a large sample in a RCT using cognitive load and time pressure to elicit intuitive/analytical processing modes.

RESEARCH QUESTION

Are individuals under System 1 processing more sensitive to social information with a low/medium quality and less accurate compared to individuals under System 2 processing?

METHODS (pilot study)

Design:

Within-subjects design and Latin-square technique with incomplete counterbalancing Sample size/ Observations : 80/1428 **Experimental treatments:** Time pressure/ instruction-based Stimuli:

22 estimation tasks (geographical, historical, social, physical quantities)

Estimation procedure:

- 1. Initial estimate (E_i)
- 2. Confidence in initial estimate
- 3. Social information (manipulated) T_1
- 4. Plausibility of social information
- 5. Revised estimate (E_r)
- 6. Confidence in revised estimate

Table 1

Predi (Inte Cond Infor Infor Cond Qual Qual Rand

τ₀₀ ICC Obse Mar

Figure 1

RESULTS (pilot study)

Results of linear mixed models

		So	cial Adaptation		Change in Accuracy			Collective Accuracy			
ctors		Estimates	CI	р	Estimates	CI	p	Estimates	CI	р	
rcept)		0.30	0.20 - 0.41	<.001	-0.11	-0.22 – -0.00	.048	-1.03	-1.22 – -0.84	<.001	
lition [System 1]		-0.03	-0.19 - 0.13	.713	0.16	-0.01 - 0.32	.059	-0.20	-0.52 - 0.12	.231	
mation Quality [Low]		-0.03	-0.15 - 0.10	.683	-0.03	-0.16 - 0.10	.631	-0.11	-0.34 - 0.12	.360	
mation Quality [Medium]		-0.09	-0.24 - 0.06	.252	-0.18	-0.340.03	.022	-0.19	-0.46 - 0.08	.162	
lition [System 1] * Information ity [Low]		0.20	0.00 - 0.39	.046	-0.23	-0.43 – -0.03	.026	-0.29	-0.68 - 0.11	.155	
lition [System 1] * Inform ity [Medium]	ation	0.47	0.24 – 0.70	<.001	-0.32	-0.56 – -0.09	.007	-0.13	-0.58 – 0.33	.582	
om Effects											
0.58				0.61			0.28				
	0.01 _{Subjects}				<0.01 _{Subjects}			0.00 Groups			
	0.02				<0.01			0.00			
	80 _{Subjects}			:	80 _{Subjects}			8 _{Groups}			
ervations	1428				1428			187			
nal R ² /Conditional R ² 0.028/0.052			(0.027/0.031			0.134/0.134				

nformation quality and System 2 were used as reference values. Estimations made under treatments of Analytical I and II were summarized under System 2. Estimates were summarized for low ($\alpha = -2.5, -2, 2, 2.5$), medium ($\alpha = -1, 1$) and high information quality ($\alpha = -0.5, 0.5$). Effect sizes were calculated by pairwise differences of regression estimates divided by SD of population. Estimations have been winsorized at the 5th and 95th percentile. 0 of the DV's represent keeping the initial estimate/ perfect accuracy.

Density plots of adaptation to social information

Figure 2

Collective accuracy between experimental conditions

Note. Notes from Table 1 apply. Adaptation to social information has been calculated as in Jayles et al. (2020)

Note. Notes from Table 1 apply. Collective estimates were calculated as absolute individual estimates of participants from one experimental session.

METHODS (main study) I

METHODS (main study) II

Treatments:

- 4 tasks each will be posed in a low and high cognitive load condition
- 4 tasks each will be posed in a low and high time pressure condition
- 8 tasks will be posed in a control condition

Order of estimation tasks and treatments will be randomized on the group-level

Cognitive Load

Subtract three from a threedigit number vs. re-entering initial number every 15 seconds (indicated by a clock counting upwards) (Farias et al., 2017) Enter (updated) number in a random 33% intervals.

Time Pressure

14 vs. 120 seconds time for each step Indicated by timer

Control

WIRTSCHAFTS

UNIVERSITÄT

WIEN VIENNA

UNIVERSITY OF

AND BUSINESS

ECONOMICS

 120 seconds time for each step – No timer

Power analysis:

Simulation-based power analysis indicates needed sample size of a **360 participants** (40 groups of 9 subjects with 24 observations each) (Bonferroni-corrected α = .0029, β =.95)

IMPLICATIONS

– When social influence cannot be excluded in crowd decisions, preliminary results indicate that **crowds** might be **more accurate**, when they engage in System 2 in comparison to System 1 processing

- A decision environment of crowds that excludes/ reduces cognitive **load/time pressure** of individuals might be **beneficial for crowd wisdom**

- Measures that might boost crowd wisdom in crowd decisions under social influence:
 - "Forcing" individuals to take time/ giving individuals sufficient time to make a decision/judgment (Gervais, & Norenzayan, 2012)
 - Providing individuals with **decision aids** to elicit analytical thinking (Ashton, 1992)
 - Using **performance-based incentives** to elicit System 2 processing (Farrell, Goh, & White, 2014)

LITERATURE

Ashton, R. H. (1992). Effects of justification and a mechanical aid on judgment performance. Organizational Behavior and Human Decision Processes 52(2), 292-306

Farias, M., Van Mulukom, V., Kahane, G., Kreplin, U., Joyce, A., Soares, P., ... & Möttönen, R. (2017). Supernatural belief is not modulated by intuitive thinking style or cognitive inhibition. Scientific Reports, 7(1), 1-8.

Farrell, A. M., Goh, J. O., & White, B. J. (2014). The effect of performance-based incentive contracts on system 1 and system 2 processing in affective decision contexts: fMRI and behavioral evidence. The Accounting Review, 89(6), 1979-2010.

Frey, V., & van de Rijt, A. (2020). Social Influence Undermines the Wisdom of the Crowd in Sequential Decision Making. Management Science. Advance online publication. https://doi.org/10.1287/mnsc.2020.3713 Gervais, W. M., & Norenzayan, A. (2012). Analytic thinking promotes religious disbelief. Science, 336(6080), 493–496

https://doi.org/10.1126/science.1215647 Jayles, B., Escobedo, R., Cezera, S., Blanchet, A., Kameda, T., Sire, C., & Theraulaz, G. (2020). The impact of incorrect social information on collective

wisdom in human groups. Journal of the Royal Society Interface, 17(170), 20200496. https://doi.org/10.1098/rsif.2020.0496 Krause, J., Ruxton, G. D., & Krause, S. (2010). Swarm intelligence in animals and humans. Trends in Ecology and Evolution, 25(1), 28-34.

https://doi.org/10.1016/j.tree.2009.06.016 Krause, J., Ruxton, G. D., Ruxton, G., & Ruxton, I. G. (2002). *Living in groups*. Oxford University Press.

Lee, Y. J., Hosanagar, K., & Tan, Y. (2015). Do i follow my friends or the crowd? Information cascades in online movie ratings. Management Science, 61(9), 2241-2258. https://doi.org/10.1287/mnsc.2014.2082

Lorenz, J., Rauhut, H., Schweitzer, F., & Helbing, D. (2011). How social influence can undermine the wisdom of crowd effect. Proceedings of the National Academy of Sciences of the United States of America, 108(22), 9020–9025. https://doi.org/10.1073/pnas.1008636108 Sloman, S. (1996). The Empirical Case for Two Systems of Reasoning. *Psychological Bulletin*, 119(1), 3–22.