

# Introduction: Judge Advisor Systems

- Judge Advisor Systems study advice utilization
- Judge's belief  $(I_1)$  is elicited, they are offered advice  $(I_a)$ , then allowed to revise  $(J_2)$
- Weight of advice (WOA) is: WOA =  $\frac{J_2 J_1}{J_a J_1}$
- Implies  $J_2$  is a weighted average of  $J_1$  and  $J_a$

 $J_2 = WOA(J_a) + (1 - WOA)(J_1)$ 







155

| WOA = | 155-150 | — 0 | 0 38   |
|-------|---------|-----|--------|
|       | 163-150 |     | - 0.30 |

help you make your final estimate. The average rom a past study was: 163 pounds Now enter your final estimate. How much does this person weigh?

his person weigh?

## Egocentric Discounting Bias

Mean **WOA** is commonly in the range of **0.2 to 0.3** (Harvey & Fischer, 1997; Soll & Larrick, 1999, 2009; Yaniv & Kleinberger, 2000)

**Conclusion**: People weigh their priors more heavily than advice

## Choosers vs. Averagers

Soll and Larrick (2009) pointed out that the distribution of WOA is typically **trimodal**.

- Mode 1: WOA = 0
- Mode 2: 0 < WOA < 1
- Mode 3: WOA = 1

**Conclusion:** Some people choose between their priors and advice, while others average

This implies an alternative account of egocentrism. Mean WOA tends to be heavily influenced by cases where WOA = 0

How should we approach this problem theoretically and computationally?





## Decline, Adopt, or Compromise: A New Model of Advice Taking Society for Judgment and Decision Making 2022 La Jolla, CA Mark Himmelstein & David Budescu **Contact**: mhimmelstein@fordham.edu



$$WOA_{i} = \begin{cases} = 0 \text{ with } P_{i,co} \\ = avg_{i} \text{ with } P_{i,co} \end{cases}$$

$$avg_i \sim Beta(a = \phi_i \mu_i, k$$

$$\begin{aligned} & \gamma_{1i} = \frac{e^{\beta_1 x_i}}{1 + e^{\beta_1 x_i} + e^{\beta_2 x_i}} \\ & \gamma_{2i} = \frac{e^{\beta_2 x_i}}{1 + e^{\beta_1 x_i} + e^{\beta_2 x_i}} \end{aligned} \right\} Multinomial Logistic Regression \\ & \alpha_i = \frac{1}{1 + e^{-\beta_3 x_i}} = expectation of Beta dist. \\ & \varphi_i = e^{\beta_4 x_i} = precision of Beta dist. \end{aligned}$$

- Each  $\beta_k x_i$  represents effects of **predictors** (e.g. distance) between advice and prior belief).
- Multinomial logistic regression models probabilities of the different Stage 1 choices (decline, adopt, compromise)
- **Beta regression** models **Stage 2 averaging judgments**

Each study shows trimodality

Himmelstein, M. (2022). Decline, adopt or compromise? A dual hurdle model for advice utilization. Journal of Mathematical Psychology, 110, 102695.

- $b = \phi_i(1 \mu_i))$



- Bottom panel shows **PPD of WOA**
- low distance advice
- discounting

Model can separa **Stage 1 decisio** 

### Othe

- Logg et al. (2019) Algorithm appreciation was low effort Stage 1 decision effort Stage 2 averaging ju
- Lay and expert participants more likely to adopt algorit during **Stage 1 decision**

Across all three studies, there was substantial evidence of individual differences in choosing (Stage 1) vs averaging (Stage 2) strategies

Distance • 20 • 50 • 75 + 125

• Top panels show **posterior predictive distribution (PPD)** of **Stage 1 Probabilities** for **advisor competence** and **distance** • Points are **posterior means** 

• Points are **posterior means in averaging judgment** • Low effort decision to decline (Stage 1) drives discounting of

• High effort averaging judgment (Stage 2) drives egocentric

| <u>Key Benefit</u><br>ate effects that occur during low effort<br>n from high effort Stage 2 judgment |                                                                                                                                                                                                                                               |  |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| r Highlights and Conclusions                                                                          |                                                                                                                                                                                                                                               |  |
|                                                                                                       | Himmelstein & Budescu (2022)                                                                                                                                                                                                                  |  |
| s driven by<br>, not high<br>dgment<br>s were both<br>thmic advice                                    | <ul> <li>Found evidence of algorithm<br/>appreciation for long time horizon<br/>previously undetected at Stage 1</li> <li>Many effects involving belief-advice<br/>distance were clearly separable<br/>between Stage 1 and Stage 2</li> </ul> |  |