

The Advantages of Numeric Uncertainty Information in Complex Decision-Making Task

Jee Hoon Han & Susan Joslyn University of Washington, Seattle, WA, USA

Introduction

- It is now possible to quantify uncertainty information in some domains. (weather forecast: 30% chance of 6 inches or more of snow)
- However, experts worry that the lay-person will not understand it.
- Nonetheless, research suggests that people use numeric uncertainty to make better decisions for binary choices.

Joslyn & LeClerc, 2013

- However, in many real-world situations there are more options, increasing processing load.
- Will the advantage for numeric uncertainty information hold when more options are considered?

Research Question

Do people make better decision with numeric uncertainty information when 3 as well as 2 options are considered?

Methods

School closure simulation task

- Participants (N = 178) advised schools when to close due to snow
- Based on a weather forecast for snow accumulation (in inches)
- Instructions: advise closing when snow accumulation ≤ 6 is expected and advise delaying* when 1 ≤ snow accumulation < 6 is expected.
- Goal: Retain as many endowed points as possible
- Small cost for closing & delaying*
- Potential larger penalty for not closing or delaying* (* indicates that it's only in the 3-option condition)

Weather forecast: (in the 3option + prob. condition) **4 inches** of snow. (*single value forecast*) **84% chance** of snow 1 inch or more.* (*probabilistic*) **31% chance** of snow 6 inches or more.

Methods cont.

Point system

- Costs to either close (2 points) or delay (1 point)*
- Possible penalty for not taking protective action

2 (2-option vs. 3-option) X 2 (probabilistic vs. single value forecast)

Complexity	Forecast Format		Optimal	Outcome	
	Single Value	Probabilistic	Decision	Cost	Potential Penalty
2-Option	4" of snow 24% chance of snow 6+	Close 1 6"	2	0	
		24% chance of snow 6+"	Open	0	8
3-Option	4" of snow	4" of snow 84% chance of snow 1+" 31% chance of snow 6+"	Close	2	0
			 ↑ 6" Delay ↑ 1" 	1	4
			Open	0	2 or 8

Results

Expected Value

Forecast: 5 inches of snow, 30% chance of 6 or more inches of snow Close: = -2 points (← optimal choice)

Open: (-8) X (30%) = -2.4 points

Based on the expected value, there is one economically optimal decision for every trial

Expected Value Difference (EVD)

Participants' mean expected value – optimal expected value = EVD

Probabilistic (M=-7.43, SD=6.43) better (shorter) than Single Value (M=-11.88, SD=7.77), F(1, 174) = 19.50, p < .001, $p^2 = .10$; **2-Option** (M=-8.70, SD=6.33) marginally better (shorter) than **3-Option** (M=-10.56, SD=7.94), F(1, 174) = 3.65, p = .06, $p^2 = .02$. Error bars represent standard errors of the mean.

Results cont.

Decision Error Analysis

Risk averse: a decision safer than optimal option Risk seeking: a decision riskier than optimal option

Probabilistic better (less error) than **single value** forecast F(1, 348) = 19.03, p < .001, $\eta_p^2 = .05$.

2-way interaction: People in **2-option** made more *risk seeking* errors, whereas people in **3-option** condition made more *risk averse* error, F(1, 348) = 25.43, p < .001, $\eta_P^2 = .07$. Error bars represent standard errors of the mean.

Kahneman & Tversky, 1979

Conclusion

- Numeric uncertainty information led to better quality decision in a more complex and realistic task
- Addition of an intermediate option changes the tendency from risk seeking to risk averse in loss scenario

References

- Joslyn, S., & LeClerc, J. (2013). Decisions with uncertainty: The glass half full. *Current Directions in Psychological Science*, 22(4), 308-315.
- Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. *Econometrica*, 47, 263-291.

This research was funded by a grant from National Science Foundation (NSF), Award No. 1559126 $\,$