The Advantages of Numeric Uncertainty Information in Complex Decision-Making Task

Jee Hoon Han \& Susan Joslyn
University of Washington, Seattle, WA, USA

Introduction

- It is now possible to quantify uncertainty information in some domains. (weather forecast: 30% chance of 6 inches or more of snow)
- However, experts worry that the lay-person will not understand it.
- Nonetheless, research suggests that people use numeric uncertainty to make better decisions for binary choices.
- However, in many real-world situations there are more options, increasing processing load.
- Will the advantage for numeric uncertainty information hold when more options are considered?

Research Question

Do people make better decision with numeric uncertainty information when 3 as well as 2 options are considered?

Methods

School closure simulation task

- Participants ($N=178$) advised schools when to close due to snow
- Participants ($N=178$) advised schools when to close due to snow
- Based on a weather forecast for snow accumulation (in inches) Instructions: advise closing when snow accumulation ≤ 6 is expected
and advise delaying* when $1 \leq$ snow accumulation <6 is expected.
and advise delaying* when $1 \leq$ snow accumulation
Goal: Retain as many endowed points as possible
- Small cost for closing \& delaying*
- Potential larger penalty for not closing or delaying* (* indicates that it's only in the 3-option condition)
Weather forecast: (in the 3option + prob. condition)
4 inches of snow. (single value forecast)
$\mathbf{8 4 \%}$ chance of snow 1 inch or more.* (probabilistic)
31% chance of snow 6 inches or more.
What is your advice to the school in the area?

| Close | Delay | \begin{tabular}{\|c|}
\hline
\end{tabular}\quad Open |
| :---: | :---: | :---: |
| Cost: 2 points | Cost: 1 point * | Cost: 0 points |

Methods cont.

Point system

- Costs to either close (2 points) or delay (1 point)*
- Possible penalty for not taking protective action
- 2 (2-option vs. 3-option) X 2 (probabilistic vs. single value forecast)

Complexity	Forecast Format		Optimal Decision	Outcome	
	Single Value	Probabilistic		Cost	Potential Penalty
2-Option	4" of snow	4 " of snow 24% chance of snow 6+"	Close ------ 6" Open	0	0 8
3-Option	4" of snow	4" of snow 84% chance of snow $1+"$ 31% chance of snow $6+"$	$\left\lvert\, \begin{gathered} \text { Close } \\ \uparrow \text {----- 6" } \\ \text { Delay } \\ \boldsymbol{\uparrow}----1^{\prime \prime} \\ \text { Open } \end{gathered}\right.$		$\begin{gathered} 0 \\ 4 \\ 2 \text { or } 8 \end{gathered}$

Results

Expected Value
Forecast: 5 inches of snow, 30% chance of 6 or more inches of snow Close: $\quad=-2$ points (\leftarrow optimal choice)
Open: $(-8) \times(30 \%)=-2.4$ points
Based on the expected value, there is one economically optimal decision for every trial

Results cont.

Decision Error Analysis
Risk averse: a decision safer than optimal option
Risk seeking: a decision riskier than optimal option

Probabilistic better (less error) than single value forecast $F(1,348)=19.03, p<.001, \eta_{p}^{2}=.05$.

2-way interaction: People in 2-option made more risk seeking errors, whereas people in 3-option condition made more risk averse error, $F(1,348)=25.43, p<.001, \eta_{p}^{2}=.07$ Error bars represent standard errors of the mean.

Conclusion

- Numeric uncertainty information led to better quality decision in a more complex and realistic task
- Addition of an intermediate option changes the tendency from risk seeking to risk averse in loss scenario

References

- Joslyn, S., \& LeClerc, J. (2013). Decisions with uncertainty: The glass half
full. Current Directions in Psychological Science, 22(4), 308-315. full. Current Directions in Psychological Science, 22(4), 308-315.
Kahneman, D., \& Tversky, A. (1979). Prospect theory: An analysis of decision under - Kahneman, D., \& Tversky, A. (197
risk. Econometrica, 47, 263-291.

This research was funded by a grant from National Science Foundation (NSF), Award No. 1559126

