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Introduction
Interrupted time series graphs are common in A-B designs, and more generally in any 
situation where something new (an interruption) is thought to cause a change
• Top-down influences could include belief perseverance

• People may interpret ambiguous or missing feedback as confirming previous beliefs1

• Bottom-up influences include perceptual features of the graph
• A major source of such features is autocorrelation (error in earlier time points affects 

later time points)
• Positive autocorrelation

• E.g., hot days followed by hot days, and cold by cold
• Leads to smoother line patterns
• Previous evidence of impaired graph judgment2,3

• Negative autocorrelation
• E.g., low sleep nights followed by long sleep nights, & vice-versa
• Leads to jagged, reversing patterns

Could belief perseverance and autocorrelation affect informal graph judgment in distinct 
ways?

Abstract
Informal judgment of graphs can be swayed by both top-down expectations and bottom-
up perceptual factors. Participants judged whether an event in the middle of a time-series 
graph affected later data points. Participants’ beliefs about the proportion of graphs with 
such an effect had large impact on a signal detection measure of bias. In contrast, the 
autocorrelation of the time-series – which controlled perceptual features – primarily 
affected discriminability. These results highlight the importance of formal statistical 
algorithms to corroborate informal graph judgment.

•Subjects (n=91) judged 378 interrupted time-series graphs
•Graphs showed cholesterol level before and after made-up drug (e.g., Ziaxin) was started
•Participants judged whether cholesterol increased after drug-start using a 6-point scale
•For each drug, the first 18 trials (practice trials) had feedback and were manipulated to 
influence belief perseverance. Three conditions:

• High proportion (89% had cholesterol increase)
• Medium proportion (50%)
• Low proportion (11%)

• In critical trials, no feedback was given, and all proportions were 50%
•Population autocorrelation was manipulated through an AR1 generating model: 

•positive (+.75), zero (0), or negative (-.75).
•Half of trials had a cholesterol increase (population intercept higher during drug phase)

Additional Experiments
•Ruled out the simple explanation that 
autocorrelation effects were due to 
variance and extended effects to 
two-tailed decisions

Discussion
•Common characteristics of informal 
time-series graph judgments 
impacted decisions in different ways
•We recommend corroborating 
informal graph judgments with 
formal statistical models6, particularly 
those designed for short time-
series7,8

Belief perseverance primarily impacted a 
signal detection measure of bias,
η2

G = 0.22***.

Belief perseverance had a smaller 
influence on discriminability,
η2

G = 0.02***. There was also a small 
interaction, η2

G = 0.01***.

In contrast, autocorrelation primarily 
impacted discriminability,
η2

G = 0.13***.

Autocorrelation had a smaller influence 
on bias, η2

G = 0.03***.
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Unsurprisingly, actual 
cholesterol increase was 
predicted by the standardized 
difference

Human decisions were also 
associated with practice 

proportions and post-
intervention slope4,5
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Patient #9871
before taking Ziaxin while taking Ziaxin

Patient #8060
before taking Ziaxin while taking Ziaxin

Patient #9003
before taking Ziaxin while taking Ziaxin

False Positives (incorrectly deciding cholesterol increased)

Tr
u

e 
Po

si
ti

ve
s

Tr
u

e 
Po

si
ti

ve
s

Zero Autocorr.

Negative Autocorr.

Positive Autocorr.

High proportion

Medium proportion 

Low proportion 

Positive 
Autocorrelation

Zero 
Autocorrelation

Negative 
Autocorrelation

mailto:guthrieec@g.cofc.edu

