Spatial Uncertainty in Forecasts Lowers Perceived Risk and Likelihood of Precautionary Action

Summary

People often do not take small probabilities seriously-a dangerous attitude in the context of lowprobability high-impact events, such as extreme weather. One method to increase forecast probabilities for these events is to widen the area a forecast is made for (i.e., lowering the spatial resolution). However, a wider area means more uncertainty about where exactly the event may occur.

We found that lower spatial resolution reduced how ikely participants estimated to be hit and how often they chose to protect themselves. At the same time higher forecast probabilities increased participants' risk perception and likelihood to take precautionary action. The results constitute a starting point for investigating the trade-off between forecast probability and spatial uncertainty.

Methods

Design

- Online exeperiment (2 tasks, 12 trials per task)
- $\mathrm{N}=149$, within subject
- Three levels of forecast resolution (neighborhood, southwest, city)
Four probability levels
($20 \%-30 \%-40 \%-50 \%$)

Scenario

- "You are the organizer of a small outdoor festival."
- Participants checked thunderstorm forecasts to avoid being hit.

Measures

- Estimate: How likely is it that the event area is going to be hit? [in percent]
- Decide: Host or cancel the event?

- Select: Which forecast interpretation is the most appropriate?

John Gubernath, Nadine Fleischhut

Fig. 1. Participants saw forecasts with three levels of resolution (Neighborhood = high, Southwest = medium, Whole city = low). The pink area marks the forecast region, the blue marker shows the area of interest (the event location).

Results

How likely is it that the event area is hit by thunder? Lower resolution, lower perceived risk!

- Higher forecast probability significantly increased perceived risk of being hit
- Lower forecast resolution significantly decreased perceived risk
- Interaction between higher forecast probability and lower resolution

Fig. 2. Participants' likelihood estimates that the event area is going to be hit by thunderstorms.
Host or cancel the event? Lower resolution, fewer cancelations!

[^0]
What does a 30\% chance of thunderstorms tomorrow mean?

„Any point" interpretation (30\% of participants) At any one particular point in the area (e.g., at the townhall) there is a 30% chance that thunderstorms will occur tomorrow, and a 70% chance that thunderstorms will not occur tomorrow.
"Somewhere" interpretation (66\% of participants) There is a 30% chance that thunderstorms will occur somewhere (i.e., in at least one place) in the area tomorrow, and a 70% chance that thunderstorms will occur nowhere in the area tomorrow.

Fig. 4. Mean absolute deviation between likelihood estimates and forecasted probabilities by forecast interpretation. Significant difference only for low resolution forecasts, $t(82.07)=-2.98, p<.01$.

Conclusion

- Lower forecast resolution reduces perceived risk and likelihood to take precautionary action
- So: Lowering the resolution increases communicated probabilities, but that does not necessarily increase perceived risk
- Is there a sweet spot in that trade-off?
- Interpretations of spatial reference class only rough proxy for observed risk perception and behavior

[^1]
[^0]: Fig. 3. Proportions of events hosted (risky choice) across participan

[^1]: Contact:
 J. Gubernath, Risk Communication Unit, Robert Koch Institute, Berlin, Germany: Gubernath」@rki.de
 N. Fleischhut, Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany: fleischhut@mpib-berlin.mpg.de

