

Memory Modeling of Counterfactual Retrieval

Introduction

- People often engage in counterfactual thinking (i.e., thinking about what's contrary to the fact—they imagine alternative possibilities to a target event.
- Whether a counterfactual thought comes to mind depends on its desirability (Phillips et al., 2019) and its semantic similarity with the target event (Kahneman & Miller, 1986).
- We build a formal quantitative model to examine the effects of previously suggested mechanisms as well as memory mechanisms on counterfactual retrieval.

Methods

- Three online studies using similar procedures with different contexts:
- Study 1 (job offer): N = 53; $M_{aae} = 20$
- Study 2 (vacation trip): N = 53; $M_{aqe} = 32$
- Study 3 (fruits & vegetables): N = 40; $M_{age} = 20$

Schematic of experimental design

Session 1	How much would you like to work in Germany?					
	Dislike a great deal	Dislike a moderate amount	Dislike a little	Neither like nor dislike	Like a little	Like a modera amour
	0			50		

Feiyi Wang, Ada Aka, Sudeep Bhatia University of Pennsylvania

The Desirability Effect

• A more desirable counterfactual thought is more likely to come to mind, earlier in the sequence.

P(retrieval) of an item i =

The Semantic Similarity Effect

The semantic similarity between any two words is calculated by their cosine similarity ($cos\theta$) in an English word vector model using Google's corpus.

People tend to think about counterfactuals that are more semantically similar with the assigned target.

total # of times *i* is retrieved

total # of participants

Markov Model Results

- network.

Activation(Spain|Cuba, Target) = $\beta_D \cdot \text{Desirability}(\text{Spain}) + \beta_L \cdot \text{Likelihood}(\text{Spain}) + \beta_L \cdot \text{Likelihood}(\text{Spa$ β_{ST} · Sim(Spain, Target) + β_{SP} · Sim(Spain, Cuba) + β_F · Frequency(Spain)

Model

Desirability Likelihood Sim. w/ target Sim w/ prev. item Word frequency

***p < .001, likelihood ratio tests between full model and a 1-variable reduced model. Models were fit using maximum likelihood estimation.

Conclusion

- with the target item.
- counterfactual retrieval.

References

Hertwig, R., Herzog, S. M., Schooler, L. J., & Reimer, T. (2008). Fluency heuristic: A model of how the mind exploits a by-product of information retrieval. *Journal of Experimental* Psychology: Learning, memory, and cognition, 34(5), 1191. Howard, M. W., & Kahana, M. J. (2002). When does semantic similarity help episodic retrieval?. Journal of Memory and Language, 46(1), 85-98. Kahneman, D., & Miller, D. T. (1986). Norm theory: Comparing reality to its alternatives. Psychological review, 93(2), 136. Phillips, J., Morris, A., & Cushman, F. (2019). How we know what not to think. *Trends in* cognitive sciences, 23(12), 1026-1040.

• Our model is a Markov random walk on a semantic

• We found that the desirability and the semantic similarity effects hold even after controlling for likelihood and other memory mechanisms.

Study 1	Study 2	Study 3
Coeff.	Coeff.	Coeff.
0.282***	0.373***	0.184***
0.023	0.095	0.014
1.896***	1.341***	2.118***
6.773***	6.751***	6.105***
1.069***	0.923***	0.838***

• We build a formal parametric model to investigate the mental processes at play during counterfactual thinking.

The retrieval of counterfactuals is influenced by subjective desirability and how semantically similar it is

• We have run additional studies to explore of priming on