

Introduction:

How does risk-taking propensity change across the life span? We conducted a coordinated analysis of 10 longitudinal panels (168,925 unique respondents) across three or more waves spanning up to 28 years, to obtain the first meta-analytic estimates of age differences in general and domain-specific risk-taking propensity.

Research questions

- >>> What are the overall age patterns of mean-level change in risk-taking propensity?
- > Do gender differences moderate mean-level trajectories?
- > To what extent are age and gender patterns domain-specific?

Method

Procedure

M1: Intercept-only model M2: Age fixed effects model M3: Age fixed and random effects model M4: Age fixed and random effects model with gender M5: Age fixed and random effects model with interaction M6: Age quadratic growth model M7: Age quadratic growth model with gender

Age differences in risk-taking propensity: A coordinated analysis of longitudinal studies Yunrui Liu¹, Alexandra Bagaïni¹, Gayoung Son¹, Madlaina Kapoor¹, and Rui Mata^{1,2} ¹Center for Cognitive and Decision Sciences, University of Basel

Samples

Overview of Samples

Meta analysis

Visualize and summarize the average trajectories using metafor in R

Sample	Country	Continent	n	Female (%)	Mean age	Age range	Scale –	Number of waves						
								G	F	D	R	0	Η	\mathbf{S}
DHS	NL	EU	$9,\!445$	46.36	52.28	18-90	1-7	_	28	-	_	-	-	-
GCOE Japan	JP	AS	7,014	52.32	50.96	20-77	0-10	7	-	-	-	-	-	÷
GCOE USA	USA	NA	$7,\!618$	53.61	50.24	18-90	0-10	6	-	-	-	-	-	-
HILDA	AU	OC	$20,\!617$	48.46	50.08	18-90	1-4	-	16	-	-	-	-	-
HRS	USA	NA	$17,\!811$	58.53	67.06	51-90	0-10	3	3	3	3	3	3	2
LIKS	KG	As	8,351	53.25	41.26	18-90	0-10	5	-	-	-	-	-	-
\mathbf{PHF}	DE	EU	6,961	50.25	55.00	18-90	0-10, 1-4	3	3	-	-	-	-	-
SAVE	DE	EU	$3,\!886$	47.56	52.85	18-90	1 - 7	-	9	9	9	9	9	
SHARE Austria	AT	EU	$3,\!651$	57.57	65.60	50-90	1-4	-	6	-	_	-	1	2
SHARE Belgium	BE	EU	$3,\!185$	53.06	64.34	50-90	1-4	-	6	-	-	-	-	-
SHARE Czech Republic	CZ	EU	$3,\!452$	59.73	65.43	50-90	1-4	-	5	-	-	-	-	-
SHARE Denmark	DK	EU	$1,\!458$	48.01	62.73	50-90	1-4	-	5	-	-	-	-	-
SHARE Estonia	EE	EU	5,178	61.65	66.85	50-90	1-4	_	3	-	_	_	-	2
SHARE France	\mathbf{FR}	EU	3,317	55.98	65.40	50-90	1-4	-	5	-	-	-	-	-
SHARE Germany	DE	EU	722	50.69	65.56	50-90	1-4	-	6	-	-	-	-	-
SHARE Israel	IL	AS	800	49.75	68.30	50-90	1-4	-	3	-	-	-	-	-
SHARE Italy	\mathbf{IT}	EU	1,913	51.75	65.56	50-90	1-4		6	-	_	-	-	2
SHARE Netherlands	NL	EU	1,598	53.94	64.37	50-90	1-4	-	4	-	-	-	-	-
SHARE Slovenia	SI	EU	1,853	56.77	65.90	50-90	1-4	-	4	-	-	-	-	-
SHARE Spain	\mathbf{ES}	EU	$2,\!179$	55.48	66.15	50 - 90	1-4	-	5	-	-	-	-	-
SHARE Sweden	SE	EU	1,172	52.13	67.05	50-90	1-4	_	5	_	2	_	12	0
SHARE Switzerland	CH	EU	2,549	53.32	64.85	50-90	1-4	-	6	-	-	-	-	-
SOEP	DE	EU	$53,\!608$	51.57	48.95	18-90	0-10	14	3	3	3	3	3	3
USoc	UK	EU	587	56.56	51.47	18-90	0-10	3	-	-	-	-	-	-

2-letter code that identifies each continent. G = General, F = Financial, D = Driving, R = recreational, O = Occupational, H = Health, S

Results & Discussions Intercept-only model

The unconditional model allows to decompose variance and compare the within- to between-subject variability in the various samples.

Model comparison: the number of panels fit best

Model comparison for samples including 3 or more waves

Domain	Samples	Best fit sample number					
Domain	Samples	M3	M4	M5			
General	7	1	5	1			
Financial	20	0	17	3			
Driving	3	0	2	1			
Recreational	3	0	1	2			
Occupational	3	0	3	0			
Health	3	0	1	2			

The model comparison results revealed that a model considering age and gender but no interaction (M4) was the best fitting model in 30 of 40 samples (75%) and domains.

²Center for Adaptive Rationality, Max Planck Institute for Human Development

Between-subject variation: about total variation of the (median = 0.41, range = .15 - .59)

>> ICC values suggest that some stable between-person variation but less than other major typical personality traits.

2	S	

Summary

- Contact me: <u>yunrui.liu@unibas.ch</u>

Best model: Age-related decline in risk-taking propensity Sample - DHS - GCOE Japan - GCOE USA - PHF Female - SAVE - SHARE Austri SHARE Estonia SHARE France - - SHARE German SHARE Israel SHARE Netherland SHARE Slovenia Male Female - SHARE Spain SHARE Sweden SHARE Switzerland - SOEP - USoc Meta-analysis: age and gender effects differ by domain Genera Financia Driving ┢╾╼┥ Recreationa Occupationa ┣━━ Healt -0.2 -0.1 0.0 -0.3 -0.2 -0.1 -0.4 Gender coefficien

➢ Age effects: Results revealed a negative relation between age and both general and domain-specific risk-taking propensity.

Solution Gender effects: Females consistently reported lower levels of risk taking across the life span than males in all domains but little support for the idea of an age by gender interaction.

> Domain-specificity: The effects of age and gender are domainspecific, specially, recreational and occupational domains show larger age effects, and driving and recreational domains show lager gender effect relative to others.

Companion website: <u>https://cdsbasel.github.io/ageriskmeta/</u>