How does training reduce miscalibration?
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Introduction Zoom Meeting:

* Probability estimation training has been shown = Set of well-calibrated forecasts: » Research Question: Consider these two types of

to help individuals to produce better forecasts: _ _ _ _ miscalibration biases (Left: Compensatory, Right: Non-
compensatory). How impactful i1s training in reducing

either of these biases?
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| Longshot Bias |

= |t reduces forecast error, I1.e., the Brier Score

(Mellers etl al. 2014, Moore et al. 2017).
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calibrated” 45-degree line (chang et a. 2016) Forecast probability
>

rue P(wW
True P(w=15

N

Forecast probability Forecast probability,
0.4 0.6 0.8 1 . 0.4 0.6 0.8 1

0

o
~
N

0.6 0.8 1

Overview of Data and Methods

" Publicly available data set called the “Good : P(W=1) ; ) Notes

' : — F 2 2 - |og ratio of forecasts as an IV
Judgment Project”, winner of a multi-year Logit Method: PW=0 exp (bO + by * log — b, * training + bs * training * log e Summy {raining v
- : * Individual differences are controlled
geopolitical forecasting tournament. \. =~

= A | ff d ' ' : P(W:1) ni ini J Case of R
n example or torecasted question: T —PW = 1) = exp | (bo+b, * training))+ (b,+ (b3 * training))log T 7] INo Biac. True P(W=1)=F (Forecast)

"Will Greece remain a member of the EU Estimation greater than 0: Pessimistic Bias Estimation greater than 1: Favorite Longshot Bias
through 1 June 20127 KESt'ma“O” less than 0: Optimistic Bias Estimation less than 1: Reverse Favorite Longshot Bias -

*\We explore biases among 307 individual Results
forecasters (with at least 22 forecasts) who

randomly were assigned to either go through a Parameter (Csfzgff'E‘;'reo";; Bias Detection =\We use a novel model to detect

probability training (n=137) or not (n=170). both non-compensatory and

. . . Intercept (Null: by=0) -1.18 (0.27) ** | Non-compensatory type: compensatory biases In a set of
= |Initial forecasts In the first year of the Optimistic bias repeated probabilistic forecasts

tournament are studied. Training (versus non-trained) 0.55 (0.43)

Conclusions

| , : _ . Compensatory type: _ |- : : .
" Logit model ergand rietz 2019) Forecasts’ Log ratio (Null: b; = 1)| 0.54 (0.22) Reverse Favorite-Longshot Probability estimation training

| bias (marginally helped by helps by (marginally) reducing
= Dependent Variable = Actual outcome (0 or 1), Forecasts’ Log ratio * training 0.65 (0.39) * probability training) the extent of the reverse favorite

. McFadd do-r2 0.166 -
= Independent Variables: e longshot bias.

Log ratio transformation of the forecast,
training (1: gone through training or O:otherwise)

= Berg, J. E., & Rietz, T. A. (2019). Longshots, overconfidence and efficiency on the lowa Electronic Market. International Journal of Forecasting, 35(1), 271-287.
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