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▪Probability estimation training has been shown 

to help individuals to produce better forecasts:

▪ It reduces forecast error, i.e., the Brier Score 
(Mellers etl al. 2014, Moore et al. 2017). 

▪ It reduces the miscalibration component of 

the Brier Score = forecaster’s average 

absolute divergence from the “well-

calibrated” 45-degree line (Chang et al. 2016).

▪Set of well-calibrated forecasts: ▪Research Question: Consider these two types of 

miscalibration biases (Left: Compensatory, Right: Non-

compensatory). How impactful is training in reducing 

either of these biases? 
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Estimation greater than 0:  Pessimistic Bias

Estimation less than 0:  Optimistic Bias
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Estimation less than 1:  Reverse Favorite Longshot Bias

𝑇𝑟𝑢𝑒 𝑃(𝑊=1)=𝐹 (𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡)

Logit Method: 
𝑃(𝑊=1)

1−𝑃(𝑊=1)
= exp 𝑏0 + 𝑏1 ∗ log

𝐹

1−𝐹
+ 𝑏2 ∗ 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 + 𝑏3 ∗ 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 ∗ log

𝐹

1−𝐹

Case of 

No Bias:

▪Publicly available data set called the “Good 

Judgment Project”, winner of a multi-year 

geopolitical forecasting tournament.

▪An example of forecasted question: 

▪Will Greece remain a member of the EU 

through 1 June 2012?

▪We explore biases among 307 individual 

forecasters (with at least 22 forecasts) who 

randomly were assigned to either go through a 

probability training (n=137) or not (n=170). 

▪ Initial forecasts in the first year of the 

tournament are studied.

▪ Logit model (Berg and Rietz 2019)

▪ Dependent Variable = Actual outcome (0 or 1),

▪ Independent Variables: 

Log ratio transformation of the forecast, 

training (1: gone through training or 0:otherwise)

Notes:

• Log ratio of forecasts as an IV

• Dummy training IV

• Individual differences are controlled

Parameter
Coefficient

(Std. Error)
Bias Detection

Intercept (Null: 𝒃𝟎=0) -1.18 (0.27) *** Non-compensatory type: 

Optimistic bias

Training (versus non-trained) 0.55 (0.43)

Forecasts’ Log ratio (Null: 𝒃𝟏 = 𝟏) 0.54 (0.22) **
Compensatory type: 

Reverse Favorite-Longshot 

bias (marginally helped by 

probability training)Forecasts’ Log ratio * training 0.65 (0.39) *

McFadden pseudo-r2 0.166

▪We use a novel model to detect 

both non-compensatory and 

compensatory biases in a set of 

repeated probabilistic forecasts.

▪Probability estimation training 

helps by (marginally) reducing 

the extent of the reverse favorite 

longshot bias.
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