Introduction

> Previous studies have suggested two crucial psychological factors underlying delay discounting, that is, time and risk perceptions. For instance,

- Patak and Reynolds (2007) argued that people incorporated uncertainty into their valuations for delayed rewards.
- Zauberman et al. (2009) demonstrated a critical role of time perception in delay discounting.
- Date/delay effect (e.g., Read, Frederick, Orsel \& Rahman, 2005) suggested that time perception was longer when a delay was described in its length (e.g., in 7 days) than when it was described in terms of the due calendar date (e.g., on Aug. $23^{\text {th }}$).
- The relevant research, however, provided only correlational evidence for a causal chain from objective delay to delay discounting.
> Manipulated experiments were conducted in the current research to establish the causal links among the relevant variables as a support of the implicit-risk hypothesis of delay discounting.

Experiment 1

> Delay lengths were manipulated and corresponding level of risk perception and delay discounting were measured. > Forty-one participants took the risk perception task first, whereas other 44 participants took the delay discounting task first.
> Objective delay causally affected risk perception and delay discounting.
> Measuring delay discounting first did not change the subsequent measurement of risk perception.

Experiment 2

> Risk perception was manipulated by asking participants to remind the experimenter of the payment on its due date (i.e. high-risk group, 38 participants) or not (i.e., low-risk group, 36 participants).
> Risk perception and delay discounting were measured by area under the curve (i.e., AUC) and thus lower values indicated higher levels of corresponding measurements.
> The low-risk group showed lower levels of both risk perception and delay discounting than the high-risk group.

	Mean of low-risk group	Mean of high-risk group	BF10	95% credible intervals of effect size
Risk perception	0.563	0.339	21.198	$[0.254,1.338]$
Delay discounting	0.658	0.370	180.889	$[0.437,1.576]$

Experiment 3

> Time perception was manipulated using the date/delay effect.
$>$ Specifically, 64 participants encountered delays in terms of the due calendar dates (i.e., the shortperception group), and other 68 participants encountered delays in terms of their lengths (i.e., the longperception group).
> The short-perception group showed a lower level of time perception as well as lower levels of both risk perception and delay discounting than the long-perception group.

	Mean of short- perception group	Mean of long- perception group	BF10	95% credible intervals of effect size
Time perception	0.579	0.733	2394.027	$[-1.414,-0.612]$
Risk perception	0.573	0.469	3.293	$[0.071,0.838]$
Delay discounting	0.565	0.452	3.111	$[0.069,0.813]$

> Bayesian path analyses revealed evidence for both the direct effect from objective delay to risk perception and the indirect effect via time perception.

Conclusion

$>$ There is a causal chain from objective delay to delay discounting through risk perception in favor of the implicit-risk hypothesis.
> Time perception causally mediated the influence of objective delay on risk perception.

References

Patak, M., \& Reynolds, B. (2007). Question-based assessments of delay discounting: do respondents spontaneously incorporate uncertainty into their valuations for delayed rewards? Addictive Behaviors, 32(2), 351-357.
Read, D., Frederick, S., Orsel, B., \& Rahman, J. (2005). Four score and seven years from now: the date/delay effect in temporal discounting. Management Science, 51(9), 1326-1335.
Zauberman, G., Kim, B. K., Malkoc, S. A., \& Bettman, J. R. (2009). Discounting time and time discounting: subjective time perception and intertemporal preferences. Journal of Marketing Research, 46(4), 543-556.

