How Should Time Estimates be Structured to Increase Consumer Satisfaction?

Beidi Hu ${ }^{1}$, Celia Gaertig², and Berkeley Dietvorst ${ }^{3}$

Poster session: Friday Feb. 11, 3:45pm-4:45pm ET https://upenn.zoom.us//i99001005367
${ }^{1}$ The Wharton School, University of Pennsylvania, ${ }^{2}$ Haas School of Business, University of California, Berkeley, and ${ }^{3}$ Booth School of Business, University of Chicago

Research Question

Consumers often encounter time estimates in inherently uncertain contexts (e.g., driving, food delivery). How should these estimates be structured to increase consumers' satisfaction?
The current research examines two aspects of this question:
(1) Do consumers prefer point estimates or ranges?
(2) Where in the distribution of outcomes should companies put the estimates?

Study Design

Nine pre-registered studies ($N=6,301$)
Procedure: 20 simulated trials with a hypothetical food delivery app / GPS app

Sample stimulus (Study 1):

Dependent measures:
Subjective Liking of the App ($\alpha \geq 0.92$)

1. How much do you like the delivery (arrival) estimates provided by this app? (7-point) 2. How informative do you find the delivery (arrival) estimates provided by this app? (7 -point) 3. How useful do you find the delivery (arrival) estimates provided by this app? (7-point) 4. How accurate do you think this app is? (7-point)

5 . How much do you trust this app? (7-point)
erceived Accuracy of the App's Predictions

1. What percentage of the app's time estimates are very accurate? $(0 \%-100 \%)$ 2. What percentage of the app's time estimates are very inaccurate? ($0 \%-100 \%$) 3. When this app gives an inaccurate estimate, how many minutes is the app off on average? (0 minute to 20 minutes)

Pre-registrations, data, and materials available at: https://researchbox.org/482\&PEER REVIEW passcode=KNDQRR

(1) People prefer range estimates to point estimates...

Study 1 ($N=698$, MTurk, pre-registered)
Conditions: Point estimate (45 minutes); Narrow range ($40-50$ minutes; $50 \% \mathrm{CI}$), Normal range ($35-55$ minutes; $80 \% \mathrm{Cl}$)

The result is robust to:
\checkmark Different locations of point estimates in Different locations of point estimates in
the distribution (Studies $4-5$) Different underlying distribut \checkmark vs. log-normal; Study 6)
\checkmark Different duration lengths (Study 6) Different contexts (food delivery vs. driving; Study 6)
.as long as the ranges are not excessively wide.

Study 2 ($N=599$, MTurk, preregistered)

New condition:
Really wide range ($15-75$ minutes;
Study 2 Results 99\% CI)

The preference for ranges is mediated by the perception of extremely late outcomes.

Study 3 Results
($N=485$, MTurk,
($N=485$, MTurk, pre-registered)

(2) No simple answer regarding the preference of time estimates' location:

People's preference for time estimates' location differs across domains.

In Studies 4-6, we additionally manipulated the location of estimates.
Studies 4-6 Results ($N s=801,998,888$, pre-registered):
When evaluating a food delivery app: Participants liked conservative estimates that overestimate durations) no less than
accurate (.e., (Sudies 4-5).) estimates
(Studies 4-5)

When evaluating a GPS app: Participants preferred accurate estimates (Study 6).

> These domain differences can be predicted by different preferences for early outcomes.

Study 8 ($N=371$, Prolific, pre-registered)

- We manipulated whether participants evaluated a food delivery app or a GPS app. - All participants saw conservative estimates.

Even within the same domain, preference for early outcomes predicts whether people prefer an accurate or conservative estimate

Study 9 ($N=1,088$, Prolific, pre registered)
We manipulated within the food delivery domain people's preference for an early outcome. Conditions: 2 (location: accurat vs. conservative) 2 (context: ordering dinner from work vs. ordering dessert from home)

Study 9 Results

