Numeracy, numeric attention, and number use

Kevin E. Tiede ${ }^{1}$, Pär Bjälkebring ${ }^{2}$, \& Ellen Peters ${ }^{3}$

${ }^{1}$ University of Konstanz, Germany ${ }^{2}$ University of Gothenburg, Sweden ${ }^{3}$ University of Oregon

Introduction

Numeracy

- Numeracy is the ability to understand and use probabilistic and numerical concepts ${ }^{1}$

Numeracy and the use of numbers

- People higher (vs. lower) in numeracy use numeric information more when numeric and non-numeric information is available ${ }^{\text {e.g. }, 2,3}$

Why do more (vs. less) numerate people use numbers more?

Numeracy and attention to numbers

- People higher (vs. lower) in numeracy are more inclined to work with numbers ${ }^{4}$ and sample more outcomes in decisions from experience ${ }^{\text {e.g., }}$,
- However, there is little research directly testing the relation of numeracy and attention to numbers
- It is also unclear whether the actual ability (objective numeracy) or the preference for numbers (subjective numeracy) drives numeric attention

Numeric attention as a mediator

- The more people look at a piece of information, the more they use it when making decisions ${ }^{\text {e.g., }}$
- Therefore, we hypothesize that attention to numbers mediates the relation of objective numeracy and use of numbers:

kevin.tiede@uni-konstanz.d

@kevinetiede

M Method

Experiment (pre-registered)
Participants were asked to choose repeatedly between two products

- For each product, three reviewer ratings were provided
- In the numbers-only condition, only numeric ratings $(0-100)$ were provided
- In the numbers-and-labels condition, both numeric ratings and respective verbal labels (e.g., "good") were provided
- Crucially, in half of the trials the mean numeric rating and the "mean verbal rating suggested different products
- Participants were considered as using numbers (vs. labels) when they chose the option suggested by the numeric ratings

Mouselab
Ratings were hidden behind Mouselab boxes

- Participants had to hover their mouse cursor over a box to open it

Measures

Objective numeracy
Subjective numeracy

- Intelligence

Sample
$N=399$

- MTurk sample

References

[1] Peters, E. (2020). Innumeracy in the wild: Misunderstanding and misusing numbers. New York, NY: Oxiord University Press.

 ${ }^{[3]}$ Traczyk, J., \& Fulawka, K. (2016). Numeracy moderates the influence of task-irrelevant affect on probability weighting. Cognition, 15, 37-41. https://doi.org//0.01016/j:cognition.2016.03.002

R Results

Numeracy and number use

- People higher (vs. lower) in objective numeracy used numeric information more ($b=0.28, p=.001$); no effect of subjective numeracy or intelligence

Numeracy, numeric attention, and number use

- A multilevel SEM showed that people higher (vs. lower) in objective numeracy looked more often and longer at numeric information
- The number of times people attended to numeric information fully mediated the association of objective numeracy and number use (indirect effect: $b=0.06, p=.010$)
- no effect of subjective numeracy or intelligence

D Discussion

- Our research shows that people higher (vs. lower) in objective numeracy use numbers more at least partly because they attend to it more
- These findings help to understand the underlying processes of the effects of numeracy and can help to develop decision aids which require the use of numbers
(4. Peters, E., Fennema, M. G., \& Tiede, K. E. (2019). The loss-bet paradox: Acturies, accountants, and other numerate peop rate numerically bdm. 2085
[5] Ashby, N. J. . . (2017). Numeracy predicts preference consistency: Deliberative search heuristics
tency for choices from description and experience. Judgment and Decision Making, 12, 128 -13, [6] Fisher, G. \& Rangel, A. (2020). The multi-attribute attentional drift diffusion model of consumer choice. Manuscript sub mitted for pubulication.

