

Numeracy, numeric attention, and number use

UNIVERSITY OF GOTHENBURG

Kevin E. Tiede¹, Pär Bjälkebring², & Ellen Peters³

¹University of Konstanz, Germany ²University of Gothenburg, Sweden ³University of Oregon

Introduction

Numeracy

Numeracy is the ability to understand and use probabilistic and numerical concepts¹

Numeracy and the use of numbers

 People higher (vs. lower) in numeracy use numeric information more when numeric and non-numeric information is available^{e.g., 2,3}

Why do more (vs. less) numerate people use numbers more?

Numeracy and attention to numbers

- People higher (vs. lower) in numeracy are more inclined to work with numbers⁴ and sample more outcomes in decisions from experience^{e.g., 5}
- However, there is little research directly testing the relation of numeracy and attention to numbers
- It is also unclear whether the actual ability (objective numeracy) or the preference for numbers (subjective numeracy) drives numeric attention¹

Numeric attention as a mediator

- The more people look at a piece of information, the more they use it when making decisions^{e.g., 6}
- Therefore, we hypothesize that attention to numbers mediates the relation of objective numeracy and use of numbers:

© Contact

Zoom link

https://zoom.us/j/6664766504?p wd=TitVbUVYWk9qUU9wbkxFdkR Tcm9kQT09

M

Method

Experiment (pre-registered)

- Participants were asked to choose repeatedly between two products
- For each product, three reviewer ratings were provided
- In the *numbers-only* condition, only numeric ratings (0–100) were provided
- In the numbers-and-labels condition, both numeric ratings and respective verbal labels (e.g., "good") were provided
- Crucially, in half of the trials the mean numeric rating and the "mean" verbal rating suggested different products
- Participants were considered as using numbers (vs. labels) when they chose the option suggested by the numeric ratings

Mouselab

- Ratings were hidden behind Mouselab boxes
- Participants had to hover their mouse cursor over a box to open it

Measures

- Objective numeracy
- Subjective numeracy
- Intelligence

Sample

- N = 399
- MTurk sample

R

Results

Numeracy and number use

People higher (vs. lower) in objective numeracy used numeric information more (b = 0.28, p = .001); no effect of subjective numeracy or intelligence

Numeracy, numeric attention, and number use

- A multilevel SEM showed that people higher (vs. lower) in objective numeracy looked more often and longer at numeric information
- The number of times people attended to numeric information fully mediated the association of objective numeracy and number use (indirect effect: b = 0.06, p = .010)
- no effect of subjective numeracy or intelligence

D

Discussion

- Our research shows that people higher (vs. lower) in objective numeracy use numbers more at least partly because they attend to it more
- These findings help to understand the underlying processes of the effects of numeracy and can help to develop decision aids which require the use of numbers

References

Peters, E. (2020). Innumeracy in the wild: Misunderstanding and misusing numbers. New York, NY: Oxford University Press.
Dieckmann, N. F., Slovic, P., & Peters, E. (2009). The use of narrative evidence and explicit likelihood by decision makers varying in numeracy. Risk Analysis, 29, 1473-1488. https://doi.org/10.1111/j.1539-6924.2009.01279.x

[3] Traczyk, J., & Fulawka, K. (2016). Numeracy moderates the influence of task-irrelevant affect on probability weighting. Cognition, 151, 37–41. https://doi.org/10.1016/j.cognition.2016.03.002

- [4] Peters, E., Fennema, M. G., & Tiede, K. E. (2019). The loss-bet paradox: Actuaries, accountants, and other numerate people rate numerically inferior gambles as superior. *Journal of Behavioral Decision Making*, 32, 15–29. https://doi.org/10.1002/bdm.2085
- [5] Ashby, N. J. S. (2017). Numeracy predicts preference consistency: Deliberative search heuristics increase choice consistency for choices from description and experience. *Judgment and Decision Making*, 12, 128–139.
- [6] Fisher, G., & Rangel, A. (2020). The multi-attribute attentional drift diffusion model of consumer choice. *Manuscript sub-mitted for publication*.

