

Aggregation of Subjective Location Judgments: An Extension of Cultural Consensus Theory to 2-Dimensional Continuous Data

> Maren Mayer & Daniel W. Heck (University of Mannheim & Phillips University of Marburg)

Abstract

- Paradigm: Aggregation of individual, 2-dimensional location judgments on geographical maps
- Goal: Comparison of Cultural Consensus Theory (CCT) and Wisdom of Crowds (WOC) for 2-dimensional data
- Hypothesis: CCT outperforms WOC because it identifies experts and assigns higher weights to experts

Extended CCT Model & Parameters

 CCT is a data aggregation method for cases in which correct answers and expertise of informants are

Accuracy of Expertise Weighting

• Both aggregation methods (expertise-weighted CCT vs. standard WOC) provide unbiased mean estimates

unknown (Batchelder & Romney, 1988; Anders et al., 2014)

- We extend CCT for 2-dimensional continuous data
- Relevance: 2-dimensional location judgments placed by individuals on geographical maps
- We compare the (expertise-weighted) CCT estimates
 to typical WOC estimates (Merkle et al., 2020)

Variance of estimates decreases when using the expertise-weighted CCT model.

Comparison of CCT and WOC estimate

Parameter Recovery

Mean differences between the true values and the CCT estimate and the WOC estimate respectively were aggregated over items and dimension.

Discussion

- Extended model allows applying Cultural Consensus Theory (CCT) to 2-dimensional data for the first time
- Comparison with typical WOC estimate supports earlier findings that weighting by expertise improves accuracy

Applications of the model to empirical data are planned

References

- Andres, R., Oravecz, Z., & Batchelder, W. H. (2014). A Cultural Consensus Theory for continuous responses: A latent appraisal model for information pooling. *Journal of Mathematical Psychology, 61*, 1–13.
- Batchelder, W. H., & Romney, A.K. (1988). Test theory without an answer key. *Psychometrika*, *53*, 71–92.
- Merkle, E.C., Saw, G., & Davis-Stober, C. (2020). Beating the average forecast: Regularization based on forecaster attributes. *Journal of Mathematical Psychology,* 98, 102419.

HEIDELBERGER AKADEMIE DER WISSENSCHAFTEN

Akademie der Wissenschaften des Landes Baden-Württemberg <u>https://uni-</u> mannheim.zoom.us/j/2331216217

Contact: Maren Mayer (maren.mayer@students.uni-mannheim.de) Statistical Modeling in Psychology University of Mannheim