Study 1A: osf.io/e95kw
Study 1B: osf.io/5ucaq
Study 2: osf.io/65n8a

Question!

Do all conjunction fallacy errors share a common cognitive cause? Or do logically similar errors happen for different reasons in different cases?

Main Items

Physical Conjunction Fallacy (Cannonball \& Sphere; C\&S):
Ludwin-Perry, E., Bramley, N., Davis, E., \& Gureckis. T.G. (2019). Limits on the Use of Simulation in
Physical Reasoning. Proceedings of the 41st Annuil Conference of the Cognitive Science sacien

The full list of items is available at osf.io/652wh/wiki/Comparing\ C onjunction\%20Errors\%20Reference of each event below occurring from 0 to 100%
$>$ Peter will run the mile in under 4 min.
$1: 55$ will run the second half-mile under $1: 55$ min, and will complete the mile in under
4 min . Taxes: Please estimate the percent chance of
each event below occurring from 0 to 100%. > A tax cut will be passed by Congress > A tax cut will be passed by Congress between January 1 st and March 31st, 2020 and it will be supported by most
Republicans.

Bill: Bill is 34 years old. He is intelligent, but unimaginative, compulisive, and gener lifeless. In school, he was strong in
mathematics but weak in social studies and
humanities. Please estimate the percent chance of each statement below being true, from 0 to 100%.
Bill plays jazz for a hobby
Birl is an accountant who plays jazz for a
hobby.
Peter: Peter is a junior in college who is trining
to run the mile in a regional meet. In his best race, earlier this season, Peter ran the mile in 4:06 min. Please estimate the percent chance

Study 1A: Conjunction Errors (MTurk)
$n=100$

Table 1: Pearson Correlations Among Conjunction Errors in Study 1A						
	C\&S	Taxes	Bill	Peter	Health	Dice
C\&S	-					
Taxes	-0.099	-				
Bill	0.006	-0.153	-			
Peter	-0.057	0.194	-0.023	-		
Health	0.022	0.120	-0.032	0.193	-	
Dice	0.201^{*}	$-0.310^{* *}$	0.202^{*}	-0.064	0.175	-

${ }^{* *}$, unadjusted $p<.01$

Table 2: Chi-Square Tests of Relation Among Conjunction Errors in Study 1A

	C\&S	Taxes	Bill	Peter	Health	Dice
C\&S	-					
Taxes	0.007	-				
Bill	0.011	0.988	-	0.044	-	
Peter	0.000	2.459				
Health	1.132	$12.971^{* * *}$	1.408	1.083	-	
Dice	0.347	0.178	$6.253 *$	0.096	0.399	-
*, unadjusted $p<.05$						

${ }_{*}^{*}$, unadjusted $p<.05$
Study 1B: Conjunction Errors (Undergraduate)
$n=100$
Table 3: Pearson Correlations Among Conjunction Errors in Study 1B

	C\&S	Taxes	Bill	Peter	Health	Dice
C\&S	-					
Taxes	-0.031	-				
Bill	0.106	0.055	-			
Peter	-0.184	0.202^{*}	-0.122	-		
Health	0.138	-0.096	0.086	-0.051	-	
Dice	-0.014	-0.031	0.154	0.031	0.031	-
* unadjusted $p<05$						

Table 4: Chi-Square Tests of Relation Among Conjunction Errors in Study 1B

	C\&S	Taxes	Bill	Peter	Health	Dice
C\&S	-					
Taxes	0.017	-				
Bill	0.079	1.217	-			
Peter	1.145	$4.043 *$	0.510	-		
Health	0.98	1.411	$6.648 *$	0.805	-	
Dice	3.428	3.143	1.612	0.409	0.000	-
*, unadjusted $p<.05$						

Study 2: Close Comparison
※ Intentionally similar items. By comparing very similar problems, we can estimate a baseline of how correlated conjunction errors can be.

* Dropped the Peter problem.
* For each of the remaining questions, we included two new questions that were intended to closely match the original both in content and in structure.
* The full list of items is available at osf.io/652wh/wiki/Comparing\ Conjunction\ Errors\ Reference/

Table 7: Factor Analysis of Conjunction Errors in Study 2

One-Factor Solution				Two-Factor Solution		
	Factor 1		Factor 1	Factor 2		
C\&S	-	C\&S	-	-		
Taxes 1	0.30	Taxes 1	-	-		
Taxes 2	0.51	Taxes 2	0.48	-		
Taxes 3	0.44	Taxes 3	0.34	-		
Dice 1	0.31	Dice 1	-	-		
Dice 2	-	Dice 2	-	0.50		
Dice 3	-	Dice 3	-	0.36		
Health 1	0.78	Health 1	0.87	-		
Health 2	0.75	Health 2	0.89	-		
Health 3	0.58	Health 3	0.47	-		
Bill 1	0.40	Bill 1	-	0.73		
Bill 2	-	Bill 2	-	0.42		
Bill 3	-	Bill 3	-	0.32		

Rotation Method: Promax
Factor loadings of absolute value less than 0.30 not shown.

