Uncertainty resolution in numerosity comparison: The moderating role of math ability

Shirley Duong and Melissa Libertus
Psychology Department, University of Pittsburgh

Let's connect!

shd77@pitt.edu
SJDM office hours here (Zoom)

SUMMARY

- Many decisions are guided by our basic intuitions of quantity, which is supported by the Approximate Number System (ANS).
- Individual differences in a numerosity comparison task used to index ANS acuity are associated with formal math ability ${ }^{1}$.
- This variation may also reflect differences in attention or uncertainty resolution, which can be approximated by eye movements that reflect attention switching between targets to gather information ${ }^{2}$.

We find that people who tend to switch between targets more often in a numerosity comparison task generally perform better, particularly if they have high math ability.

Descriptive statistics

| Measure | Description | Mean (SD) | Range |
| :--- | :--- | :--- | :--- | :--- |
| Numerosity comparison
 Accuracy | \% of correct trials | $.78(.06)$ | $.62-.90$ |
| Response time (RT) | Average RT across trials | $1.01(.28)$ | $.61-2.07$ |
| Switching frequency | Average frequency with
 which individuals switch
 between the dot arrays | $2.66(.92)$ | $.12-4.48$ |
| Standardized math | Normed score from \# of
 correct items | $109.19(9.91)$ | $71-132$ |

RESULTS *Hierarchical linear regression models relating numerosity comparison accuracy to math ability and switching frequency were conducted.

Consistent with past research, math ability is positively related to ANS acuity.

*Model 1: ANS acuity = Math ability + Task difficulty + RT

DISCUSSION

If we believe that switching frequency indicates the extent of uncertainty resolution or information gathered, then it is possible that:

- Individuals with high math ability are generally better than those with low math at obtaining and processing relevant information to compare numerosities.
Another possibility is that switches reflect different states or processes for different groups of people, e.g.,
- Switches may index how much info was gathered or a double-checking strategy for high math people.
- Switches may index a state of uncertainty or difficulty with the task for low math people.

Future work should include additional eye-tracking metrics and cognitive measures.

Switching frequency in dot comparison is positively related to ANS acuity.

*Model 2: ANS acuity $=$ Math ability + Switching Frequency + Task difficulty + RT

The relation between switching frequency and ANS acuity is stronger for those with higher math ability.

*Model 3: ANS acuity = Math + Switching + Math * Switching + Task difficulty + RT

References

[1] Braham, E., J., \& Libertus, M. (2018). When approximate number acuity predicts math performance: The moderating role of math anxiety. PLoS ONE, 13(5), e0195696. doi: $\frac{10.1371 \text { /iournal.pone. } 0195696}{}$ [2] Cassey, T. C., Evens, D. R., Bogacz, R., Marshall, J. A. R., \& Ludwig, C. J. H. (2013). Adaptive sampling of [3] Halberda, ,., Mazzocco, M., \& Feigenson, L. (2008). Individual differences in nonverbal number acuity [3] Halberda,, ., Mazzocco, M., \& Feigenson, L. (2008). Individual differences in
predict maths achievement. Nature, 455, 665-668. doi: $10.1038 /$ nature07246
predict maths achievement. Nature, 455, 665-668. dol: 10.1038 /nature07246
[4] Woodcock, R. W., McGrew, K. S., \& Mather, N. (2001). Woodcock-Johnson III Tests of Achievement.
Itasca, II. Riverside Publishing.

