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Research 
question

Experiments from different research traditions 
came to different conclusions about over- or 

underweighting of extreme values in decisions from 
numerical samples. Is this an artefact of different 

modeling frameworks being used ? 

Method
Reanalysis of two data sets, each with both (i) 
cumulative prospect theory and (ii) a selective 

integration model.

Key 
results

The two models agree in their conclusions about 
over- or underweighting, indicating that conflictive 

results patterns in previous studies are likely due to 
differences in stimuli and/or design features of the 

experiments.

Models: CPT and SI
• Cumulative prospect theory (CPT):

• Value function (for gains, x, and losses, y): 

• Probability weighting function

• Selective integration (SI) model:
• Value function:

• Sample-level decision value
• No separate probability weighting
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Background
• Economic research commonly indicates diminished sensitivity 

for extreme values, indicated by a compressed (concave) 
value function.

• Several psychophysical studies of numerical averaging show 
the opposite – an overweighting of extreme values, i.e., a 
convex value function (e.g. Ludvig et al., 2014, Tsetsos et al., 
2016, Spitzer et al., 2017, Vanunu et al., 2019).

• However, these different lines of work used different 
computational models, most commonly cumulative prospect 
theory (CPT) and selective integration (SI), respectively. 

• Could the different model architectures lead to the different 
conclusions about the representation of extreme values?

• To test this, we reanalyzed two data sets with both models.

Compressed, linear and anti-compressed subjective value weighting
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Participants sample possible outcomes of two options (left and right) before 
making a final binary choice (e.g., Hertwig & Erev, 2009).

Data sets

Discussion

Result

• The models agree in their predictions for the same data set.
à The divergence is not an artefact of different models.

• Overall better fit with CPT [∆BIC = 4.9 (Appelhoff), ∆BIC=2.6 
(Kellen)] à Probability weighting in CPT might play an 
additional role but is not the main cause for the different 
distortions.

• Distortions may flexibly adapt to properties of the stimulus 
space (e.g., sample distribution and/or -range)

Value functions and estimated parameters for both the Kellen et al. (2016) data 
and the Appelhoff et al. (in prep) with both CPT (orange) and SI (blue)
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Kellen et al. (2016)
• Gain, loss and mixed gambles
• Outcomes -1000 to 1000
• Non-uniformly distributed

• 104 participants
• 114 trials
• 2 options with at least one two-

outcome gamble
• Incentive compatible
• Active drawing and variable 

stopping

Appelhoff et al. (in prep)
• Only gain gambles
• Outcomes integers 1 to 9
• Outcomes and probabilities 

uniformly distributed

• 40 participants
• 100 trials
• 2 options with each 2 outcomes
• Incentive compatible
• Active vs. yoked sampling, 

variable vs. fixed stopping

Kellen et al. (2016)            Appelhoff et al. (in prep)
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