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Introduction

Psychological Explanations

• The most widely applied non-expected utility theories1,2,3 combine the 

classical core of  expected utility theory4 with a concave utility function 

and non-linear probability weighting to account for findings unexplained 

by EUT5,6,7

𝐸𝑉(𝑋) =

𝑖=1

𝑛

𝝅(𝒑𝒊) ∗ 𝒗(𝒙𝒊)

• Despite of  decades of  research, the psychological processes underlying 

the estimated shape of  these functions remain unclear

• Earlier work has suggested that concave utility could reflect decision by 

sampling8, efficient coding9, 10, 11, heuristic processing12 or attentional 

processes13, 14, whereas probability weighting has been suggested to 

result from sensitivity to extreme probabilities1, 15, a log-odds 

representation of  frequency and probability-related information16, and/or 

bounded rationality17, 18

• Based on existing work in perceptual and cognitive psychology19, 20, 21, 22 and 

neuroscience23, 24, the present approach builds on the assumption that a 

reduction in uncertainty carries utility
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Contributions
• The perception of  a probability p is influenced by the amount of  

uncertainty reduction it carries 

• relative to the uniform distribution (maximum entropy)

• depending on other probabilities in the distribution (actual entropy)

• Formally:

where Hdist =-∑pilog2(pi)
26, Hmax =log2(n), and n denotes the number of     

probabilities in the distribution that p is embedded in

• This yields an n-dimensional function that has its fixed point at 1/n and 

curvature that depends on the entropy of  the distribution

Note: Existing probability weighting functions cannot reflect changes in n

or distributional shape without changes in fitted parameters

Figure 1. Existing probability weighting functions3, 27, 28, 29, 30

Valence-Weighted Distance (VWD) 25

1. Probability weighting

• Explains probability weighting with a simple principle

• Takes context of  p (n, shape of  distribution) into account

• Makes novel, empirically testable predictions

• Location of  fixed point determined by n

• Curvature determined by shape of  distribution

2.Expected utility theory and information theory

• Captures the psychological impact of  outcome-

probability associations31 cf. 32, 33

3. Log-odds representation of  frequency and probability

• Provides a parsimonious explanation for the 1/n puzzle16
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Illustration with n = 2

𝑉𝑊𝐷(𝑝) =
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For n = 2, Hmax = 1

Compare to linear-in-log-odds:

Parameterized VWD
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where β, γ ϵ [0, 1] reflect attention given to n and entropy

Hdist 1 – Hdist p VWD(p)

Figure 2. VWD(p) when n is varied from to 2 to 7 while retaining 

maximum entropy (left) and when entropy is varied while n = 3 (right)
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Figure 3. Parameterized VWD(p) when γ is varied from 0 to 1 while 

fixing β to 1 (upper row) and when β is varied from to 0 to 1 while fixing 

γ to 1 (lower row) for n = 2 (left), n = 3 (middle), and n = 4 (right).

Utility of uncertainty reduction merged with utility of

increased likelihood of  gain
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