The Dual Accumulator Model of Strategic Deliberation and Decision Making

Russell Golman¹ Sudeep Bhatia² Patrick Kane³

¹Department of Social & Decision Sciences Carnegie Mellon University

> ²Department of Psychology University of Pennsylvania

³Biomedical Ethics Unit McGill University

November 16, 2019

Golman (CMU)

Dual Accumulator Model

November 16, 2019 1 / 27

Behavioral Game Theory

э

<ロト < 同ト < ヨト < ヨト

Three Components of Behavioral Game Theory

"Virtually all [experimental] results. . . can be accommodated by including behavioral components—

- social utility,
- limited iterated reasoning, and
- learning

-into analytical theory"

- Colin Camerer

Three Components of Behavioral Game Theory

"Virtually all [experimental] results. . . can be accommodated by including behavioral components—

- social utility,
- limited iterated reasoning, and
- learning

-into analytical theory"

- Colin Camerer

Should We Care About Cognitive Processes?

Much of behavioral game theory has grown out of relaxing unrealistic assumptions behind Nash Equilibrium:

- Level-k reasoning and cognitive hierarchy theory relax assumption of accurate beliefs but still rely on best responding
- Logit QRE relaxes best responding, but still relies on equilibrium

Should We Care About Cognitive Processes?

Much of behavioral game theory has grown out of relaxing unrealistic assumptions behind Nash Equilibrium:

- Level-k reasoning and cognitive hierarchy theory relax assumption of accurate beliefs but still rely on best responding
- Logit QRE relaxes best responding, but still relies on equilibrium

Best responding (to mixed strategies) is too cognitively demanding for most people!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Should We Care About Cognitive Processes?

Much of behavioral game theory has grown out of relaxing unrealistic assumptions behind Nash Equilibrium:

- Level-k reasoning and cognitive hierarchy theory relax assumption of accurate beliefs but still rely on best responding
- Logit QRE relaxes best responding, but still relies on equilibrium

Best responding (to mixed strategies) is too cognitively demanding for most people!

Describing realistic cognitive processes underlying strategic deliberation may allow us to

- make better behavioral predictions about strategic choice
- make predictions about correlations between strategic choice and response time
- make predictions about attention during deliberation

(日) (雪) (ヨ) (ヨ) (ヨ)

What Are the Underlying Cognitive Processes?

We propose a bidrectional preference accumulation model to describe strategic deliberation

- Stochastic sampling (with fixed probabilities) and dynamic accumulation are cognitive processes that underlie a good behavioral model of risky choice (decision field theory) also other forms of preferential choice (i.e., multi-attribute or decentralized)
- We introduce bidirectional feedback (and dynamically changing probabilities) to apply these cognitive processes to strategic choice

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Heuristic Implementation

• Sampling:

- Consider some strategy s_j my opponent might choose. "What if my opponent chose s_j? How would my strategies do?"
- 2 Then consider a strategy s_i that catches my eye / looks good for me to choose. "What if I chose s_i? How would that affect my opponent?"

(Consideration of a strategy is random, but influenced by how good it currently seems and how salient it is. Influence scaled by a stochastic sampling parameter λ)

• Accumulation: Repeat a finite number of times (*T*), building up an overall sense of how good each strategy feels, and then pick what feels best.

イロト 不得 トイヨト イヨト 二日

Bidirectional Accumulation

Dual Accumulator Model

November 16, 2019

э

7 / 27

Behavioral Patterns Reflecting Limited Iterated Reasoning

- Stochastic choice
- Failures of unraveling
- Payoff sensitivity
- Risk-reward tradeoffs in coordination games
- Salience effects

Traveler's Dilemma

Both players get $\min\{s_1, s_2\} \pm \gamma$, where γ is a small reward or penalty given to the player with the lower claim and taken from the player with the higher claim

Nash Equilibrium Prediction Everyone always claims 20

Real Behavioral Pattern

Higher claims as γ decreases Claims approach upper bound (Capra et al., 1999; Goeree & Holt, 2001)

< ロ > < 同 > < 回 > < 回 > < 回 > <

Traveler's Dilemma: Predictions vs Data

- Predicted behavior with $\lambda = .01$ and T = 10
- Empirical data reported by Goeree and Holt (2001)

Kreps' Game

Nash Equilibrium Prediction {Top, Left} or {Bottom, Right}

Real Behavioral Pattern

Top and Non-Nash are modal (Evidence of risk-reward tradeoff)

(Goeree & Holt, 2001)

Kreps' Game: Predictions vs Data

- Predicted behavior with $\lambda = .01$ and T = 10
- Empirical data reported by Goeree and Holt (2001)

Strategies with Salient Labels

Choose one of four boxes:

to play a

- simple coordination game
- hide-and-seek game
- discoordination game

Nash Equilibrium Prediction

Labels are irrelevant Locations are irrelevant

Real Behavioral Pattern

Choose B for coordination Middle-A modal in hide-and-seek

(Rubinstein et al., 1997)

Hide and Seek: Predictions vs Data

- Predicted behavior with $\lambda = .01$ and T = 10 and $\sigma_1 = \sigma_2 = [50, 100, 0, 50]$
- Empirical data reported by Rubinstein et al. (1997)

The dual accumulator model predicts that strictly dominated strategies will never be chosen.

Golman (CMU)

Dual Accumulator Model

3 k 4 3 k -November 16, 2019 15 / 27

Image: A matrix and a matrix

э

Existing Behavioral Game Theory Models

- Level-k reasoning / cog-hierarchy: do k steps of best responding (assuming level 0 is uniformly random or most salient strategy)
 - Accounts for failures of unraveling
 - Accounts for risk-reward tradeoffs
 - Accounts for some, not all salience effects
 - Fails to account for many instances of payoff sensitivity
 - Heterogeneity, but no intrinsic variability
- Logit quantal response equilibrium: a noisy best response to (accurate) expected play of the other player
 - Accounts for payoff sensitivity
 - Accounts for risk-reward tradeoffs
 - Accounts for some, not all failures of unraveling
 - Cannot account for salience effects
 - Stochastic, but too tolerant of dominated strategies

イロト イポト イヨト イヨト 三日

Model Comparison

Fit models to Stahl and Wilson (1995) data

How well can we account for the strategy choices of 48 subjects who each played a set of 12 3x3 symmetric games once without feedback?

	MSE	MSE
Model	Full Sample	Out-of-sample
Dual Accumulator	0.1434	0.1775
Level-k	0.1871	0.2210
Level-k with noise	0.1653	0.2000
Poisson Cognitive Hierarchy	0.1921	0.2068
Empirical Cognitive Hierarchy	0.1944	0.2049
Logit Quantal Response Equilibrium	0.1971	0.2174
Noisy Introspection	0.1104	0.2300

Shared Ingredients

- Level-k reasoning finite steps of strategic deliberation
- Logit equilibrium stochastic choice
- Decision field theory sampling and accumulation

Conclusion

Our model makes good behavioral predictions

Same cognitive mechanisms at play in strategic and non-strategic choice

< □ > < 同 >

Formal Structure

Let A_j be the activation for strategy s_j (initially 0) Let σ_j be the salience of strategy s_j Let p_j be the probability of considering s_j Let u_{ij} be the utility *i* gets from choosing s_i when *j* chooses s_j

$$p_j = \frac{e^{\lambda(A_j + \sigma_j)}}{\sum_k e^{\lambda(A_k + \sigma_k)}} \qquad \qquad A_i \mapsto A_i + u_j$$

Two free parameters:

- stochastic sampling parameter λ
- time limit T

Decision rule:

Choose *i* if
$$A_i(T) = \max_{\iota'} A_{\iota'}(T)$$
 (ties broken randomly)

Traveler's Dilemma: Dual Accumulator Predictions

Golman (CMU)

November 16, 2019 21 / 27

э

Kreps' Game: Dual Accumulator Predictions

Golman (CMU)

Dual Accumulator Model

November 16, 2019

22 / 27

Hide and Seek: Dual Accumulator Predictions

November 16, 2019 23 / 27

э

Stag Hunt

¥	Hunter 2: Stag	Hunter 2: Hare
Hunter 1: Stag	100, 100	0, γ
Hunter 1: Hare	γ, 0	γ,γ

Nash Equilibrium Prediction

Either both hunt stag or both hunt hare

Real Behavioral Pattern

More hare as γ increases Hare becomes modal for some γ in 50 $<\gamma<100$

(Schmidt et al., 2003)

Stag Hunt: Dual Accumulator Predictions

Golman (CMU)

Dual Accumulator Model

November 16, 2019 25 / 27

Stag Hunt: Predictions vs Data

- Predicted behavior with $\lambda = .01$ and T = 10
- Empirical data reported by Schmidt et al. (2003)

Golman (CMU)

Odd-One-Out Games: Predictions vs Data

- Predicted behavior with $\lambda = .01$ and T = 10 and $\sigma_1 = \sigma_2 = [100, 0, 0, 0]$
- Empirical data reported by Hargreaves Heap et al. (2014)