EDGE & ENDOWMENT INSENSITIVITY IN BET SIZING

PAVEL ATANASOV pavel@pytho.io

with JASON DANA (YALE), PHILIP TETLOCK (PENN), BARBARA MELLERS (PENN)

> JDM NOV 15, 2019

HOW MUCH WOULD YOU BET?

You have \$100 to invest in each of two gambles.

- 1. Double-or-nothing bet, coin weighted 55% toward Heads.
- 2. Double-or-nothing bet, coin weighted 60% toward Heads.

BET SIZING: THE EASY PART?

Quickly calculating the right bet size based on my perceived edge is my job in a nutshell.

14 Day \$1,061,554

RELATED WORK

KELLY PRESCRIPTIONS

f = edge / odds

- 1. Size bets in proportion to edge.
 - Naïf: "Double-or-nothing prospect pays 55% of the time."
 - Kelly: "Prospect offers +0.1 edge."
- 2. Think of bets in proportion to endowment.
 - Naïf: "I have \$100. I will bet \$10."
 - Kelly: "I will bet 10% of my endowment."

Equivalent to log utility maximization, optimizes long-run growth.

TASK: COIN FLIPS WITH VARYING EDGE(1)

Play	
Probability of Heads: 70%	9

Balance 60.23

Bet amount (in cents):

Time left: 00:09:17 Number of rounds left: 93

History

Counter	Bet	Result	Won/Lost	Amount	Balance
7	Heads	Heads	Won	\$0.04	\$0.23
6	Heads	Tails	Lost	\$0.01	\$0.19
5	Heads	Heads	Won	\$0.02	\$0.20
4	Heads	Tails	Lost	\$0.10	\$0.18
3	Heads	Tails	Lost	\$0.12	\$0.28
2	Heads	Tails	Lost	\$0.20	\$0.40
1	Heads	Heads	Won	\$0.10	\$0.60

Try it with play money: http://coinflipcasino.azurewebsites.net/ Contact pavel@pytho.io about using this task.

COIN FLIPS WITH VARYING EDGE, TIPS (2)

Play	Balance
Probability of Heads: 70%	\$0.23
Tip: Bet \$0.09 on Heads.	
Bet amount (in cents):	
Bet Heads Bet Tails	Time left: 00:09:17
	Number of rounds left: 93

History

Counter	Bet	Result	Won/Lost	Amount	Balance
7	Heads	Heads	Won	\$0.04	\$0.23
6	Heads	Tails	Lost	\$0.01	\$0.19
5	Heads	Heads	Won	\$0.02	\$0.20
4	Heads	Tails	Lost	\$0.10	\$0.18
3	Heads	Tails	Lost	\$0.12	\$0.28
2	Heads	Tails	Lost	\$0.20	\$0.40
1	Heads	Heads	Won	\$0.10	\$0.60

Try it with play money: <u>http://coinflipcasino.azurewebsites.net/</u> Contact <u>pavel@pytho.io</u> about using this task.

RESULT: EDGE INSENSITIVITY

MAPPING TO HOLT & LAURY (2002)

Number of Safe Choices	Range of Relative Risk Aversion for $U(x) = x^{1-r}/(1-r)$	Risk Preference Classification	
0-1	<i>r</i> < -0.95		highly risk loving
2	-0.95 < r < -0.49		very risk loving
3	-0.49 < <i>r</i> < -0.15		risk loving
4	-0.15 < <i>r</i> < 0.15		risk neutral
5	0.15 < <i>r</i> < 0.41		slightly risk averse
6	0.41 < r < 0.68	Low Edge	risk averse
7	0.68 < r < 0.97		very risk averse
8	0.97 < r < 1.37	Hiah	highly risk averse
9-10	1.37 < r	Edge	stay in bed

KELLY TIPS DO NOT ELIMINATE BIAS

EDGE SENSITIVITY DISTRIBUTION

MEAN INVESTMENT SHARE BY ENDOWMENT SIZE

MAPPING TO HOLT & LAURY (2002)

Number of Safe Choices	Range of Relative Risk Aversion for $U(x) = x^{1-r}/(1-r)$		Risk Preference Classification
0-1	r < -0.95		highly risk loving
2	-0.95 < <i>r</i> < -0.49		very risk loving
3	-0.49 < <i>r</i> < -0.15		risk loving
4	-0.15 < <i>r</i> < 0.15		risk neutral
5	0.15 < r < 0.41		slightly risk averse
6	0.41 < r < 0.68	Low	risk averse
7	0.68 < r < 0.97	_•…	very risk averse
8	0.97 < r < 1.37	Hink	highly risk averse
9-10	1.37 < r	High	stay in bed

EDGE AND ENDOWMENT SENSITIVITY: INFERENTIAL TESTS

	Condition: Original		Condition	: Kelly Tip
	Raw	Adjusted	Raw	Adjusted
Intercept	0.28 (0.02)	0.78 (0.21)	0.12 (0.01)	-0.29 (0.53)
Edge Sensitivity	0.24 (0.01)**	0.15 (0.08)	0.68 (0.02)**	0.64 (0.06)**
Endowment	-0.04 (0.001)**	-0.05 (0.009)**	-0.03 (0.001)**	-0.02 (0.006)**
N Subjects	103	96	109	106
N Subjects×Rounds	6,148	6,055	5,638	5,532
Subject Fixed Effects	Yes	Yes	Yes	Yes

Notes: Linear Mixed Effects Model in R, nlme.

Edge coefficients below 1 denote edge insensitivity.

Standard errors in parentheses.

Cumulative proportion of "Heads" was negatively related to bet fraction, orthogonal to main results.

UNDERAPPRECIATION OF PROFIT DIFFERENTIALS

On average, how much more profitable will a bet on heads be when the chance of heads is 60% than when it is 55%?

On average, how much more profitable will a bet on heads be when the chance of heads is 70% than when it is 55%?

RESULTS SUMMARY

Edge insensitivity:

- Bet sizes are insufficiently responsive to edge
- Violates EUT, goes against loss aversion
- Probability weighting could account for less than half of the effect

Endowment insensitivity:

- Bets sizes are insufficiently responsive to endowment size
- Equates to steeply increasing relative risk aversion

Debiasing: Strong intervention reduced, but did not eliminate effects

IMPLICATIONS

Edge and endowment insensitivity imply that...

- Risk preferences in continuous bets are highly unstable
- Prediction market prices do not reflect average beliefs
- Newsvendor behavior can be suboptimal without demand chasing
- Holzhauer will dominate Jeopardy! \$\$\$ tables if given more chances

QUESTIONS?

pavel@pytho.io

