CONSUMER TRUST IN ARTIFICIAL INTELLI-GENCE SERVICES

Darius-Aurel Frank¹*, Polymeros Chrysochou¹, Panagiotis Mitkidis¹² & Dan Ariely²

¹Department of Management, Aarhus University, Denmark, ²Center for Advanced Hindsight, Duke University, USA

Abstract

Advances in robotics and artificial intelligence improve almost every aspect of consumer services. Yet, despite the enormous potential, artificial intelligence services face psychological barriers, such as the concern that artificial intelligence is less able to account for people's unique characteristics and personal circumstances or simply threatens to take capabilities from humans in the value chain. This research investigates how consumer trust and willingness to depend on artificial intelligence services change as a function of the stakes of decision, type of recommendation and service agent for three typical service domains (health, legal, and retail). The results show a robust negative effect of artificial intelligence relative to human service agents in consumers trust and willingness to depend on the recommendations. This effect is linked to the stakes of the decision and is highest in the health domain respectively. These results contribute to the human psychology of artificial intelligence by extending its scope to the combination of human and artificial intelligence agents. Practical implications for the trustworthy design of artificial intelligence services are discussed.

Introduction

Artificial intelligence has the potential to deliver tremendous **benefits** to humans in **health**, **legal and retail services**

Psychological barriers hinder the adoption and use of artificial intelligence in the everyday life scenarios

Theoretical background

Humans are subject to **decision-making biases**, and tend to show **risk aversion** (as well as **algorithm aversion**) in **high stakes decisions** (due to uncertainty)

Human advice is preferred over that of computer agents, as is the decision to take action (action-taking bias)

Methodology

Study design

- » service agent (Al vs. Human vs. Al + Human; between) » stakes of decision (High vs. Low; between)
- » type of recommendation (Action vs. No action; between)
- » service domain (Health and Legal and Retail; within)

Sample characteristics

» N = 1,891; U.S. residents, fluent in English, age > 18 years » $M_{age} = 38.55$, SD = 11.84; 52.0% females, 0.4% others

Measures

- » willingness to depend (4-item scale, CR_{Health} = .95, CR_{Legal} = .94, CR_{Retail} = .95)
- » perceived trust (9-item scale; CR_{Health} = .96, CR_{Legal} = .95, CR_{Retail} = .95)
- » **perceived risk** (10-item scale; CR_{Health} = .94, CR_{Legal} = .93, CR_{Retail} = .93)

RESEARCH@DARIUSFRANK.COM

Results

Independent

variable Main effects Agent 1 (AI vs. H Agent 2 (Human Stakes (High vs. Action (Yes vs. N Domain 1 (Legal Domain 2 (Retail Model summary Intercept Note. The model

Discussion

Recommendations from **human agents** always **outperform** those from artificial intelligence agents, especially in highstakes decisions

The **combination** of human-artificial intelligence agents only meets consumer's needs half-way (relative to human agents)

The implementation of artificial intelligence agents is going to be most feasible in retail and legal services

References

Awad, E., Dsouza, S., Kim, R., Schulz, J., Henrich, J., Shariff, A., ... Rahwan, I. (2018). The Moral Machine experiment. Nature, 563, 59-64. https://doi.org/10.1038/s41586-018-0637-6

Frank, D.-A., Chrysochou, P., Mitkidis, P., & Ariely, D. (2019). Human decision-making biases in the moral dilemmas of au tonomous vehicles. Scientific Reports, 9(1), 1–19. https://doi. org/10.1038/s41598-019-49411-7

Mixed model analysis

 Table 1. Estimates of willingness to depend (WTD), perceived

trust (TRUST) and perceived risk (RISK)

	WTD		TRUST		RISK	
	<i>B</i> (SE)	95% CI	<i>B</i> (SE)	95% CI	<i>B</i> (SE)	95% CI
luman)	-1.17 (.11)	-1.4095	83 (.09)	-1.0164	.83 (.10)	.64-1.03
AI vs. Human)	81 (.12)	-1.0358	50 (.09)	6831	.61 (10)	.4281
Low)	40 (.11)	6219	23 (.09)	4106	.46 (.10)	.2765
[o)	.62 (.11)	.3886	.35 (.10)	.1655	66 (.11)	8744
vs. Health)	39 (.12)	6216	58 (.09)	7740	.22 (.10)	.0241
vs. Health)	78 (.11)	-1.0057	81 (.09)	9964	.65 (.10)	.4683
	314(14)	2 86-3 41	3 17 (13)	2 92-3 41	3.01 (13)	2 75-3 27
was computed bas	3.14 (.14) sed on a full-fa	2.86-3.41 ctorial design;	3.17 (.13) non-significa	2.92-3.41 int effects are p	3.01 (.13) not shown.	2.75-3

Figure 1. Mean of perceived trust by service agent, stakes of decision, type of recommendation and service domain

> Granulo, A., Fuchs, C., & Puntoni, S. (2019). Psychological reactions to human versus robotic job replacement. Nature Human Behaviour, 1-8. https://doi.org/10/c85t

> Longoni, C., Bonezzi, A., & Morewedge, C. K. (2019). Resistance to Medical Artificial Intelligence. Journal of Consumer Research, ucz013. https://doi.org/10.1093/jcr/ucz013

Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25(1), 44-56. https://doi.org/10/gfsvzn

EY SIR!

WWW.DARIUSFRANK.COM