THE BELL CURVE IS COUNTER-INTUITIVE

Lin Fei

The University of Chicago

 Booth School of Business
Luxi Shen

The Chinese University of Hong Kong
Business School

Motivation and Background

Much cognitive psychology literature (Winkler, 1968; Hogarth, 1975; Edwards, 968) focuses on how people update beliefs over time and examines belief updating in
 , 1 i when their uncertainty about a domain is at its maximum. In this research, we investigate:

Q1: How does the mental distribution look like when people consider a variable about which they possess little knowledge.

The bell curve: Winkler (1967) postulate that people tend to generate a normal distribution for any variable they encounter
The flat line: Fox and Cleman (2005) suggest that people have "ignorant prior" and generate uniform distribution when they have limited knowledge
Q2: How does this distribution evolve with knowledge?
These questions have theoretical significance to Bayesian models of information updating, as the original mental distribution can determine subsequent prediction functions and model performance (Griffiths \& Tenenbaum, 2006).

Hypotheses

H1: People intuit a uniform distribution when they possess little knowledge about the variable

H2: Once people have a general idea (not actual specific knowledge) about that variable, they generate a distribution that is less flat and more bell-shaped, even though the actual distribution is either a bell curve or a flat line

Experimental Designs

Exp 1: Various Life Scenarios (M Turk, $\mathrm{N}=\mathbf{3 8 7}$), Test H1 Task: read 6 scenarios out of 12 scenarios and allocate a certain number of tems into several bins

${ }^{\text {No }}$, mivo	numure	Nmmerofle	
1	Movic (Roteren Tomat	Rating	15940	10
2	Bates	Songe legath	${ }^{100}$	12
3	Shimp	Size	${ }^{50}$	
4	Sur	Brighess	${ }^{150}$	11
5	Apartment	Size	242	"
6	Commute	Time	${ }_{6} 6$	
	Fight	Deaty	9	8
8	Becr	abv	${ }^{30}$	6
$\stackrel{10}{10}$		Preserpion Buturiess	${ }^{120}$	${ }_{5}^{12}$
11	$\mathrm{car}^{\text {a }}$	mpg	so	15
	Cuciticard pepiciaion			

In $\operatorname{Exp} 4$ (not reported here), we also rule out the explanation that participants were mindlessly drawing flat distributions.

Exp 2: Song Length (\mathbf{M} Turk, $\mathbf{N}=481$), Test H2, Pre-registered
IV: familiarity of song length (3 between-subjects conditions) Haidt's Symphony (unfamiliar)
Beatles (familiar)
Hit Song (familiar)
Feature: controlling for actual distributions (as normal distributions)
Exp 3: Credit Score (M Turk, N=357), Test H2, Pre-registered
IV: actual distribution (3 between-subjects conditions) young age (monotonously sloping down) middle age (U shaped) old age (monotonously sloping up)
Feature: incentivizing response accuracy

Our Findings

Exp 1: People do not intuit the bell curve. Instead, their intuitive distributions are rather flat.

* Y axis is the mean percentage of all items allocated to each bin. X-axis shows the bin values. Error bars show the standard error.
* The depicted distribution is the ageregate distribution of all participonts * The depicted distribution is the aggregate distribution of all participants answering the same scenario, calculated by taking the mean
percentage allocated to each bin. Data analysis are conducted on both the aggregate and individual levels, and the latter is reported here.

Exp 2: When people are familiar with the variable, people generate a distribution less flat

Exp 3: Having General Knowledge \neq Calibrating to Actual Distribution

Data Analyses

Main Dependent Variable: Kurtosis of each individual's distribution
Kurtosis is the $4^{\text {h }}$ central moment of a distribution. It measures the "tailedness" of a distribution. The kurtosis of any univariate normal distribution is 3 , and distributions with kurtosis smaller than 3 (lower peak; thinner tails) are named platykurtic while kurtosis larger than 3 (higher peak; fatter tails) are leptokurtic

Why kurtosis? Higher moments of the distribution better describes the shape of he distribution. In showing difference in kurtosis, we argue that participants' intuitive distribution are not Gaussian shaped with larger variance, but a different shape that should be simulated or approximated in a different way
Exp 1: We calculated the kurtosis for each participant's elicited distributio for each scenario, and used t-test to compare the mean kurtosis for each senario against uniform (kur $=1.8$) and normal (kur $=3$). All scenarios reject
(platykurtic)

	Kurosis Salisics		Testo fintosis Asinas 3 Nomal)	
	Perenatage of Kurosis ¢ 3	Median Kurtosis	T.statisic	P Value
Beates Song Length	53.65%	2.764	3.22	NS more peaked than
Fiight Delay	71.35\%	2.353	-1.75	Reiect, pro.05 $=0.041$)
SUV MPG	${ }^{72.499 \%}$	2.369 2.34	-2.94	Reject, peo.01
ces Pesesipion		2.344 2331 233	-1.10	$\mathrm{p}=0.14$
Movie Rating Cradit Card ARR		${ }^{2.331}$	-1.199	$\mathrm{p}=0.12$
Commute Time	7.8.88\%	2.301	-2.03	Reject, p¢0.05E(0.022)
Apt Size	78.95\%	2.222	-5.77	Reject, pro.001
ABV	83.25\%	2.1	3.37	ject, pxo.001
birighe	85.86\%	2.2	2.31	Reiect, pro.
np Size	89.01%	1.938	-2.63	Reject, pe.0.01
Croissat Buteren				fect, p¢0.001

Kurtosis for normal distribution is 3 and for uniform distribution is 1.8 .
Exp 2: Mean kurtosis is 4.08 for the Hit song condition, 4.55 for the Beatles song condition and 2.32 for the Symphony condition. The difference between Hit \& Symphony and Beatles \& Symphony is significant $(\mathrm{t}=8.27$ and $3.92, p<0.001)$, while the difference between Hit and Beatles is not significant $(\mathrm{t}=0.81, p=.42$).
Exp 3: The average kurtosis for each condition is not different from each othe (kur $=2.47,2.52,2.64$ for Young, Middle and Old respectively, all $n . s$.). All elicited distribution were different from actual distribution: Young: $\mathrm{t}=15.40, p<.001$; Mid $\mathrm{t}=2.63 ; p<.005 ;$ Old: $\mathrm{t}=-7.22$ (elicited is less peaked), $p<.001$.

Directions

Show that such belief is not restricted to the distribution elicitation method. Ongoing Lab Study: participants allocate items one by one.
Investigate the behavioral consequences that emerge from the belief.
Estimate properly shaped prior distribution and simulate posterior belief Estimate properly shaped prior distribution and simulate posterior belief
distribution from the estimation. Test if the simulated posterior is descriptive of people's actual judged posterior.

References

Edwards, w. (1968). Conservatism in Human Information Processing, Formal Representation of Huma Judgment, $17-52$
Fox, C. R. $\&$ Clemen
and bias toward the ign ignos). Subjective probability assessment in decision analysis: Patrition dependence and bias toward the ignorance prior. Management Science, $51(9)$), 1417-1432.
Goldstein D. G. \& Rothschild, D. (2014). Lay understanding of probability distributions. Judgment \& Decision Making, $9(1)$.
Griffiths, T. L., \& Tenenbaum, J. B. (2006). Optimal predictions in everyday cognition. Psychological Science 1879,
Hogarth R. M. ((1975). \qquad

Moorthy, S., Ratchford, B. T., \& Taulukdar, D. (1997). Consumer information search revicet Tent
Winkler, R. L. . (1967). The assesssment of prior distributions in Baysesian analysis. Journal of the America
Please Direct Your Comments and Questions Regarding the Project to: Ifei@chicagobooth.edu

