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The goal of this study is to understand how 

designers make design decisions. A designer in the 

engineering design process makes the following 

decisions to find the best design in design space :

i. selecting designs for performance evaluation, 

ii. choosing information sources, 

iii. deciding when to stop design evaluations.

Abstract

Introduction

Research Approach

The upper confidence bound model based on the 

cues of predictive uncertainty provide better fit to 

subjects’ decisions than expected utility-based EI 

model.

Results Discussion

Simple cue-based models are better predictor of 

subjects’ decisions than judgment-based models 

(some based on the expected utility theory), except 

for the decision to choose between information 

sources at large fixed budget. We also cross-

validated these results on the test dataset. We 

observed that the judgment-based models were 

largely incorrect in predicting decisions to choose 

next design x and stopping.

Whether cue-based or judgment-based models are 

optimal depends upon the domain knowledge and 

available information specific to the design problem 

[3]. Regardless, designers can likely be pushed 

toward using cue-based models by restricting fixed 

budget for design evaluations or incentivizing to save 

budget. Inversely, they can likely be pushed to use 

judgment based-models by increasing the fixed 

budget available for design evaluations.

These models have many applications including in 

the specification of designer agents for game-

theoretic models of design contests and agent-based 

models of systems engineering. An accurate 

quantification of design performance in terms of the 

designer’s strategy is possible to achieve by 

modeling designers as decision makers following the 

probabilistic decisions models.
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The designer’s objective is to find x that maximizes 

unknown function F(x) through multiple performance 

evaluations. In such case, the design process is 

viewed as iterative decision making process under 

uncertainty.
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Abstraction

Our approach consists of i) evidence collection 

using a behavioral experiment, ii) formulating simple 

cue-based and judgment-based models of decisions, 

and iii) running Bayesian model comparison on the 

experimental data.

The results suggest that subjects use simple cue-

strategies over judgement-based strategies which 

are affected by budget available for design 

evaluations. 

Design as iterative decision making process 

under uncertainty.
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The design problem is assumed to have known 

design parameters and performance criteria, but 

uncertain mapping between the two.
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The nature of design problem.
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RQ: Which descriptive models provide the best 

description of designer’s sequential decisions in 

engineering design?

We operationalize the iterative decision making 

process through the function optimization task.
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Treatments Experiment design

• 63 undergraduate 

students as subjects

• Controlled for order 

effects, wealth 

effects, and 

selection bias

Probabilistic decision models

User interface designed using oTree [2].
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Cue-based strategies Judgement-based strategies

1. Use fixed no. of low fidelity 

information sources and fixed 

no. of high fidelity sources.

2. Stop after exhausting x% of 

the fixed budget.

3. Evaluate the set of equally 

spaced designs.

1. Stop when expectation of 

improvement is small.

2. Stop after it appears that the 

maximum performance is found.

3. Use high fidelity info. source 

when performance peak 

appears.

Approximation to marginal likelihood 
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All Models Upper Bound Model (UCB)

An illustrative case

Decision to choose next design x

Cue-based models (FSN, FRB) have the highest 

marginal likelihood at low fixed budget, while 

judgment-based models (FECI) have the highest 

marginal likelihood at large fixed budget.

Decision to choose between low- & high-

fidelity information sources

Approximation to marginal likelihood 
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FSN: Fixed Sample Number; FECI: Fixed Expected Cond. Improvement

Stopping after the remaining budget is smaller than a 

fixed value (FRB model) is the most likely strategy.

Decision to stop or not

FRB: Fixed Remaining Budget;   FEI: Fixed Expected Improvement
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