

The Success of Linear Bootstrapping Models: Decision Domain-, Expertise-, and Criterion-Specific Meta-analysis

Esther Kaufmann (University of Zurich, Switzerland)
Werner W. Wittmann (University of Mannheim, Germany)

Society of Judgment and Decision Making, 2016 (Nov. 19)

Kaufmann, E., & Wittmann, W. W. (2016) The Success of Linear Bootstrapping Models: Decision Domain-, Expertise-, and Criterion-Specific Meta-Analysis. *PLoS ONE 11*(6): e0157914. doi:10.1371/journal.pone.0157914

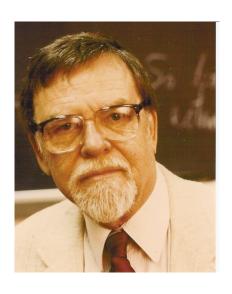
Kaufmann, E., Reips, U.-D., & Wittmann, W. W. (2013). A critical meta-analysis of Lens Model Studies in human judgment and decision-making. *PLoS ONE 8*(12): e83528. doi:10.1371/journal.pone.0083528

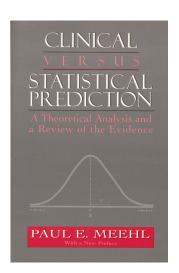
Introduction

Across a variety of settings, human judges are often replaced or 'bootstrapped' by decision-making models (in our examples, equations) in order to increase the accuracy of important - and often ambiguous – decisions

- -> to save lives in medical science
- -> to improve students' learning in education science
- Is it worthwhile to invest in developing such decision-making models, or is it just a waste of time?
- And how can we most precisely evaluate the success of bootstrapping models?

November 19, 2016 Page 2





Paul E. Meehl

Quantitative review of bootstrapping models (1954)

- Statistical vs. clinical predictions
- Frequency counting (box-score approach)

Recent reviews

Recent reviews covering the topic of the success of bootstrapping models

Meta-analysis	Inclusion criteria
Grove et al. (2000)	Human outcome –
	medical and psychological tasks
Aegisdottir et al. (2006)	Human outcome – counselling tasks
Armstrong (2001)	No criterion restrictions
Lens-Model based	
Camerer (1981)	No criterion restrictions
Karelaia and Hogarth (2008)	No criterion restrictions
Kuncel, Klieger, Connelly, & Ones (2013)	Academic and work performance settings
Kaufmann, Reips & Wittmann (2013)	No criterion restrictions

Recent reviews

Recent reviews covering the topic of the success of bootstrapping models

Meta-analysis	Inclusion criteria
Grove et al. (2000)	Human outcome –

Arm

Missing:

No comparison between decision domains

No comparison within domains between experts vs. novices

No comparison according to evaluation criteria Methodological:

Lens •

Cam

- No review at the individual level (ecological fallacy, Robinson, 1950)
- No psychometric meta-analytical evaluation (see Kuncel et al., 2013)

Karelaia and Hogarth (2008) No criterion restrictions Kuncel, Klieger, Connelly, & Ones (2013) Academic and work performance settings Kaufmann, Reips & Wittmann (2013) No criterion restrictions

Research questions

- Does the success of bootstrapping models vary across decision domains (e.g., medical versus business decisions)?
- Does the success of bootstrapping models vary within domains between expert and novice decision makers?
- Does the success of bootstrapping models vary according to the type of criterion for a "successful decision" (objective, subjective, or based on a test score)?

Success of bootstrapping models within the lens model approach

$$\Delta = GR_e - r_a$$
 Judgment accuracy of human judge(s) Model

Success of bootstrapping model

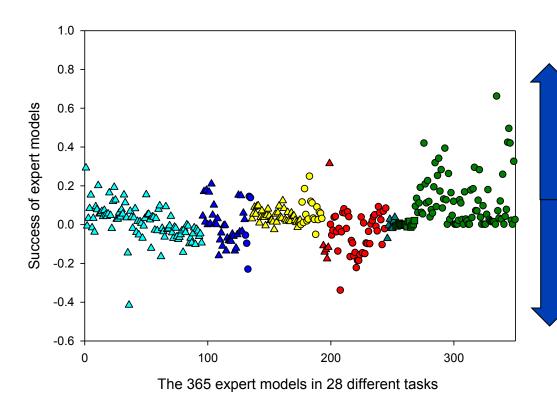
- Yes, if the value is positive
- No, if the value is negative

For more information on the Lens Model Equation, see Tucker (1964)

Studies included in the meta-analysis (medical science)

Table 1
Studies included in the meta-analyses by decision domain and decision-maker expertise

	Study	Judges	Number of judgments	Number of cues	Judgment task	Criterion	Results
<i>a)</i> 1)	Medical science, experts: Nystedt & Magnusson, 1975	4 clinical psychologists	38	3	Judge patients based on patient protocols: I:intelligence II: ability to establish contact III: control of affect and impulses	Rating on three psychological tests	$I: \Delta_1 = .11$ $II: \Delta_2 = .03$ $II: \Delta_3 = .12$ (*, +, s)
2)	Levi, 1989	9 nuclear medicine physicians	280 (60 replications)	5	Assess probability of significant coronary artery disease based on patient profiles	Coronary angiography	$\Delta_4 = .07$ (*, s)
3)	LaDuca, Engel, & Chovan, 1988	13 physicians	30	5	Judge the degree of severity (congestive heart failure) based on patient profiles	A single physician's judgment (▲)	$\Delta_5 = .08$ (*, s)
4)	Smith, Gilhooly, & Walker, 2003	40 general practitioners	20	8	Decision to prescribe an antidepressant based on patient profile	Guideline expert (▲)	$\Delta_6 =05$ (s)
5a)	Einhorn, 1974 Second study	3 pathologists	III: 193	9	Evaluate the severity of Hodgkin's disease based on biopsy slides	Actual number of months of survival	<i>III</i> : $\Delta_7 =01$ (s)
6a)	Grebstein, 1963	10 clinical experts (varying in amounts of clinical experience)	30 profiles	10	Judge Wechsler-Bellevue IQ scores from Rorschach psychograms	IQ test scores (■)	$\Delta_8 =17$ $\Delta_9 =14$
5b)	Einhorn ¹ , 1974 First study	29 clinicians	<i>I:</i> 77 MMPI profiles <i>II:</i> 181 MMPI profiles	11	Judge the degree of neuroticism- psychoticism	Actual diagnosis	$I: \Delta_{10} = .02$ $II: \Delta_{11} =05$ (*, +, s)

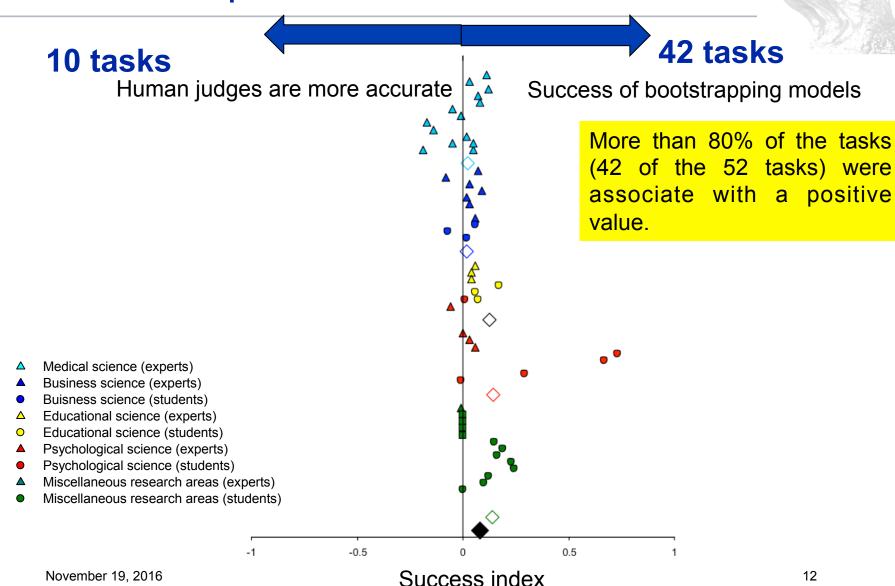


Database

- 35 studies (52 tasks)
- 1,110 bootstrapping models
- 532 experts versus 578 novices
- Five different decision domains (e.g., medical versus educational decisions)
- Individual-level data: 365 individual bootstrapping models across 28 tasks

Individual level (to prevent any aggregation bias)

Human judges are more accurate


The success of bootstrapping

models

- Medical science (experts)
- Business science (experts)
- Buisness science (students)
- Educational science (experts)
- Educational science (students)
- Psychological science (experts)
- Psychological science (students)
- Miscellaneous research areas (experts)
- Miscellaneous research areas (students)

Forest plots of the sucess of bootstrapping models organized by decision domain and decision making expertise

Domains (expertise)	k	N	Δ	SD∆	95% CI	80% CI	Q	P(%)	r2	75%
Medical	14	293	.00	.00	1012	.0000	1.3 ^{n.s.}	0.00	0.00	1,171
Publ. blas	+3	324	.03	.00	0204	.0303	39.15**	59.1	0.00	667
Expert	13	288	.01	.00	1012	.0101	1.19 n.s.	0.00	0.00	1,262
Publ. bias	+2	305	.02	.00	0204	.0203	36.59***	61.7	0.00	895
Novice	_	_	_	_	_	_	_	_	_	_
Business	10	244	.02	.00	1014	.0202	.49 n.s.	0.00	0.00	2,338
Expert	7	121	.02	.00	1520	.0202	.22 ^{n.s.}	0.00	0.00	3,791
Novice	3	123	.00	.00	1519	.0202	.26 n.s.	0.00	0.00	1,146
Publ. bias	+1	125	.02	.00	0109	.0202	15.38***	80.5	0.001	1,686
Education	6	198	.11	.00	0225	.1111	.68	0.00	0.00	> 10,000
Publ. bias	+3	208	.12	.00	.1121	.1212	67.14***	88.1	0.003	> 10,000
Expert	3	41	.04	.00	2634	.0000	.00 n.s.	0.00	0.00	> 10,000
Novice	3	157	.13	.00	0328	.1313	.42 n.s.	0.00	0.00	707
Publ. blas	+2	162	.13	.00	.1122	.1313	47.16***	91.5	0.003	1,214
Psychology	9	105	.14	.00	0533	.1414	6.5 n.s.	0.00	0.00	> 10,000
Expert	4	59	.03	.00	2228	.0303	.01 ^{n.s.}	0.00	0.00	4,971
Publ. bias	+2	62	.03	.00	.0110	.0303	3.31 n.s.	0.00	0.00	> 10,000
Novice	5	46	.29	.00	.0058	.2929	4.59 n.s.	0.00	0.00	102
Publ. bias	+1	47	.30	.00	0849	.33	67.15***	92.6	0.11	> 10,000
Miscellaneous	13	270	.13	.00	.0125	.1313	1.54 n.s.	0.00	0.00	929
Expert	5	15	.00	.00	5150	.0000	.00 n.s.	0.00	0.00	> 10,000
Publ. bias	+3	27	01	.00	2321	0101	.00 n.s.	0.00	0.00	> 10,000
Novice	12	255	.14	.00	.0226	.1414	1.25 n.s.	0.00	0.00	1,269
Overall Experts	32	532	.03	.00	0710	.0303	1.56 n.s.	0.00	0.00	> 10,000
Publ. bias	+5	820	.04	.00	.0105	.0404	53.33**	32.5	0.006	> 10,000
Overall Novices	20	578	.12	.00	.0320	.1212	9.65 n.s.	0.00	0.00	> 10,000
Overall	52	1,110	.07	.00	.0113	.0707	14.21 ^{n.s.}	0.00	0.00	> 10,000
Publ. bias	+ 12	1,365	.10	.00	.7312	.1010	398***	84.2	0.005	> 10,000

Δ = the success of bootstrapping models (see Eq 2); SD_Δ = standard deviation of true score correlation; 95% CI = confidence interval; 80% CI = 80%

Domains (expertise)	k	N	Δ	SD∆	95% CI	80% CI	Q	f (%)	12	75%
Medical	14	293	.00	.00	1012	.0000	1.3 ^{n.s.}	0.00	0.00	1,171
Publ. bias	+3	324	.03	.00	0204	.0303	39.15**	59.1	0.00	667
Expert	13	288	.01	.00	1012	.0101	1.19 ^{n.s.}	0.00	0.00	1,262
Publ. bias	+2	305	.02	.00	0204	.0203	36.59***	61.7	0.00	895
Novice	_	_	_	_	_	_	_	_	_	_
Business	10	244	.02	.00	1014	.0202	.49 n.s.	0.00	0.00	2,338
Expert	7	121	.02	.00	1520	.0202	.22 ^{n.s.}	0.00	0.00	3,791
Novice	3	123	.00	.00	1519	.0202	.26 n.s.	0.00	0.00	1,146
Publ. bias	+1	125	.02	.00	0109	.0202	15.38***	80.5	0.001	1,686
Education	6	198	.11	.00	0225	.1111	.68	0.00	0.00	> 10,000
Publ. bias	+3	208	.12	.00	.1121	.1212	67.14***	88.1	0.003	> 10,000
Expert	3	41	.04	.00	2634	.0000	.00 n.s.	0.00	0.00	> 10,000
Novice	3	157	.13	.00	0328	.1313	.42 n.s.	0.00	0.00	707
Publ. bias	+2	162	.13	.00	.1122	.1313	47.16***	91.5	0.003	1,214
Psychology	9	105	.14	.00	0533	.1414	6.5 n.s.	0.00	0.00	> 10,000
Expert	4	59	.03	.00	2228	.0303	.01 ^{n.s.}	0.00	0.00	4,971
Publ. bias	+2	62	.03	.00	.0110	.0303	3.31 n.s.	0.00	0.00	> 10,000
Novice	5	46	.29	.00	.0058	.2929	4.59 n.s.	0.00	0.00	102
Publ. bias	+1	47	.30	.00	0849	.33	67.15***	92.6	0.11	> 10,000
Miscellaneous	13	270	.13	.00	.0125	.1313	1.54 n.s.	0.00	0.00	929
Expert	5	15	.00	.00	5150	.0000	.00 n.s.	0.00	0.00	> 10,000
Publ. bias	+3	27	01	.00	2321	0101	.00 n.s.	0.00	0.00	> 10,000
Novice	12	255	.14	.00	.0226	.1414	1.25 n.s.	0.00	0.00	1,269
Overall Experts	32	532	.03	.00	0710	.0303	1.56 n.s.	0.00	0.00	> 10,000
Publ. bias	+5	820	.04	.00	.0105	.0404	53.33**	32.5	0.006	> 10,000
Overall Novices	20	578	.12	.00	.0320	.1212	9.65 n.s.	0.00	0.00	> 10,000
Overall	52	1,110	.07	.00	.0113	.0707	14.21 ^{n.s.}	0.00	0.00	> 10,000
Publ. bias	+ 12	1,365	.10	.00	.7312	.1010	398***	84.2	0.005	> 10,000

 Δ = the success of bootstrapping models (see Eq 2); SD_{Δ} = standard deviation of true score correlation; 95% CI = confidence interval; 80% CI = 80%

Results of the bare-bones meta-analysis of the success bootstrapping organized by the type of evaluation criterion

Evaluation criteria	k	N	4	SDA	95% CI	80% CI	Q	l²(%)	72	75%
Subjective	4	76	.03	.00	1925	.0303	.60 ^{n.s.}	0.00	0.00	520
Publ. blas	+2	81	.02	.00	1606	.0202	44.41***	88.7	0.01	> 10,000
Objective	33	857	.08	.00	.0114	.0808	4.78 n.s.	0.00	0.01	778
Publ. bias	+9	1,020	XX	.00	.0612	.1010	216***	81.1	0.00	639
Test	15	177	.07	.00	0821	.0707	8.68 ^{n.s.}	0.00	0.00	197
Publ. bias	+3	330	01	.01	1209	1411	149.33***	88.6	0.03	86.14

k = number of judgment tasks;

N = number of success indices:

 Δ = the success of bootstrapping (see Eq 2);

 SD_{Δ} = standard deviation of true score correlation; 95% CI = confidence interval; 80% CI = 80% credibility interval including lower 10% of the true score and the upper 10% of the true score; 75% = percent variance in observed correlation attributable to all artifacts; PubI. bias = publication bias-corrected estimation by the trim-and-fill method (see [63]); + = the number of missing tasks indicated by the trim-and-fill method.

doi:10.1371/journal.pone.0157914.t004

The success of bootstrapping according to bare-bones (in brackets) and psychometrically-corrected lens model indices

Domains	k	N	∆overall ^b	Δexperts	Δnovices
Medical science	10	258	.35 (.01)	.35 (01)	.35 (01)
Business	9	239	.018 ^a (03)	.05a (01)	.09a (02)
Education	4	156	.21 (.12)	.18 (.15)	.14 (.04)
Psychology	9	105	.08 (.04)	.23a (.15)	.04 (.04)
Miscellaneous	12	249	.26 (.16)	.27ª (.16)	.01 (02)
Overall	44	1,007	.23 (.07)	.22 (.13)	.17 (.02)

 $k = \text{number of judgment tasks}; N = \text{number of success indices}; \Delta = \text{estimated success of bootstrapping (see Eq 2)}.$

doi:10.1371/journal.pone.0157914.t005

^a = no correction of the R_e component, because this component includes only objective criteria.

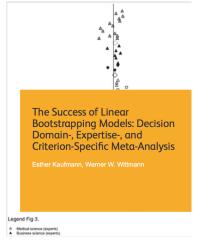
b = this column is the same as in Kaufmann et al. [11], Table 7, columns 5 and 6.

Conclusions

- Models are more accurate than both novice and expert human judges.
- The success of bootstrapping models is underestimated (without a psychometric metaanalytic evaluation).
- But, we only evaluated linear models, although nonlinear models are more user-friendly (Katsikopoulos, Machery, Pachur, & Wallin, 2008)

Thank you

Also on behalf of Professor Wittmann


esther.kaufmann@gmx.ch wittmann@xi.psychologie.uni-mannheim.de

ResearchGate

Brunswik Society Newsletter 2016

Kaufmann, E., & Wittmann, W. W. (2016) The Success of Linear Bootstrapping Models: Decision Domain-, Expertise-, and Criterion-Specific Meta-Analysis. *PLoS ONE 11*(6): e0157914. doi:10.1371/journal.pone.0157914

Kaufmann, E., Reips, U.-D., & Wittmann, W. W. (2013). A critical meta-analysis of Lens Model Studies in human judgment and decision-making. *PLoS ONE* 8(12): e83528. doi:10.1371/journal.pone.0083528