

# The effect of emotions on exploration behavior

# Yury Shevchenko, Arndt Bröder

## Exploitation-exploration trade-off

### Impact of emotions

#### Exploitation

To exploit resources in order to accumulate gains.

#### **Exploration**

To explore the environment in order to find the information about desired resources.

*Content-related influence* 

People in a negative mood evaluate an object more negatively (i.e., mood congruency effect).

*Process-related influence* 

People in a negative mood process information more carefully and systematically.

#### Research question and hypothesis

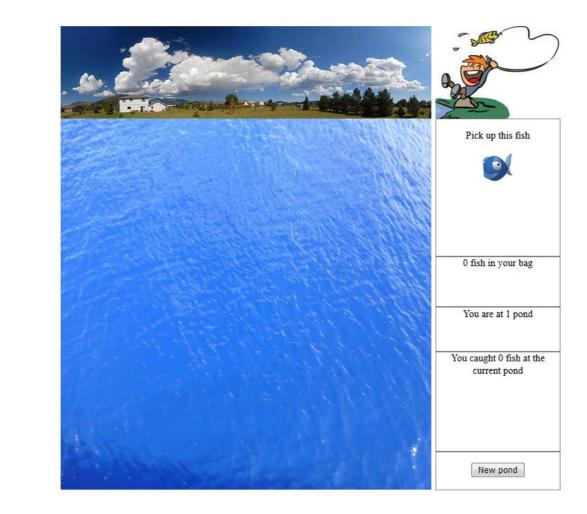
#### The experimental procedure

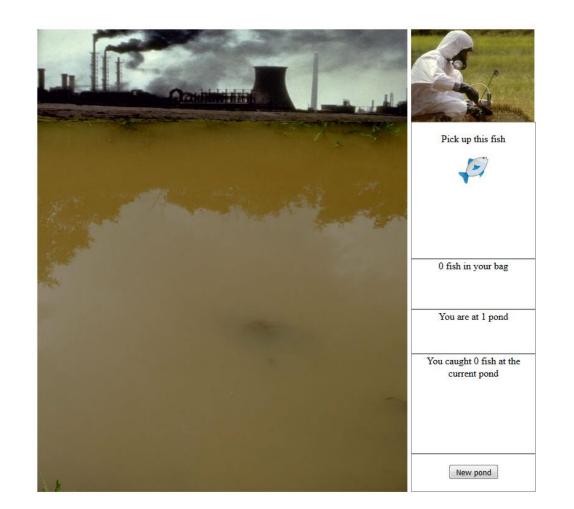
#### Mood manipulation

- emotions impact the do How decision to explore?
- 1. Demographics measures
- 2. Control questions test

Two versions of the Fishing task with music manipulation (Mitterschiffthaler et al., 2007) were used in a between-subject

*Content-related hypothesis:* people in a negative mood are expected to explore more than people in a positive mood.


*Process-related hypothesis:* people in a negative mood are expected to explore more often in the environments with a low amount of resources, but exploit in the environments with a high amount of resources.


- 3. Mood questionnaire (PANAS, 14 items)
- 4. Fishing task (20 min)
- 5. Mood questionnaire
- 6. Self-report of decision-making strategies

Fishing task (Hutchinson et al., 2008)

- A participant forages for fish in a sequence of ponds and decides on how long to stay at each pond.
- A fish pops to the surface at a rate that depends on the number of fish in a pond. The rate decreases as a subject depletes a pond. When a subject decides to switch ponds, he incurs a cost of a constant travel time (Exp. 1: 15 sec., Exp. 2: 7 sec.) between ponds.
- Exp. 1 : The number of fish per pond followed a Poisson • distribution with the mean = 10.
- Exp. 2 : There were three ponds (with zero, ten, and twenty fish) that had an equal probability to appear after switching a pond.

- design:
- Positive emotions condition: the task is to fish in the pond.
- Negative emotions condition: the task is to collect dead fish in the polluted pond.



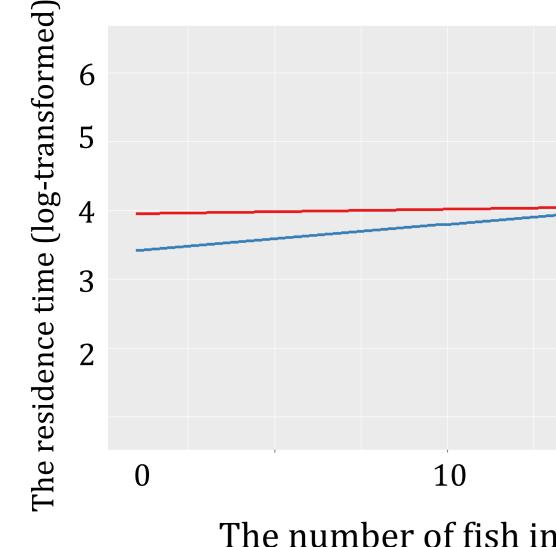


#### **Experiment** 1

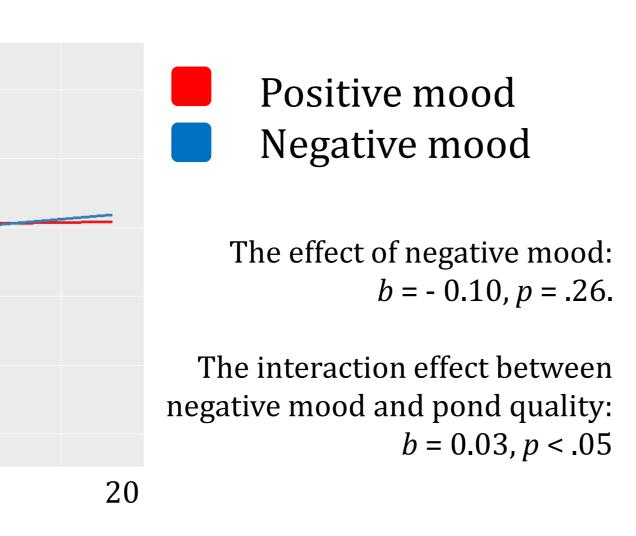
#### Experiment 2

496 participants (330 female). Mean age = 25.30.

#### The number of visited ponds


|                       | Mean | SE   | t     | р    |
|-----------------------|------|------|-------|------|
| Constant              | 6.01 | 0.51 | 11.78 | <.01 |
| Negative mood group   | 1.04 | 0.51 | 2.04  | <.05 |
| Finishing the task    | 2.98 | 0.50 | 5.96  | <.01 |
| Number of fish misses | 0.02 | 0.03 | 0.66  | .51  |

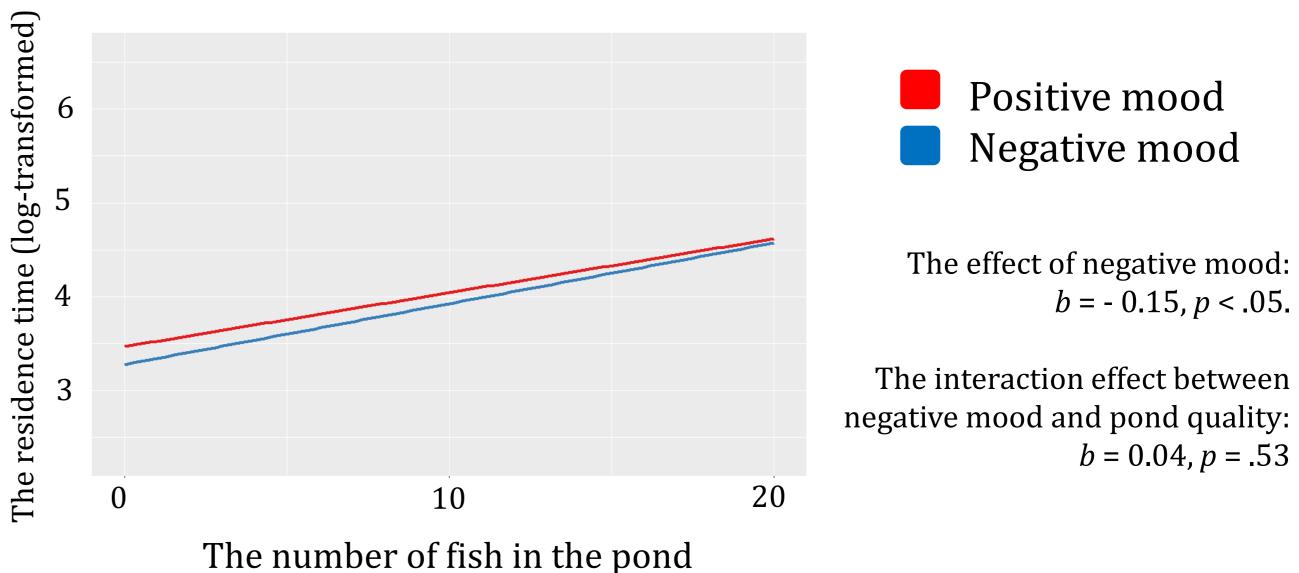
#### 137 participants (113 female). Mean age = 23.06.






Multiple regression analysis for the number of visited ponds. Unstandardised regression coefficients are presented.  $N = 496, R^2 = 0.08, Adj.R^2 = 0.07, F(3,492) = 14.21, p < .01, RSE(492) = 5.53.$ 




#### **Residence time at each pond**





| Constant              | 12.46 | 0.75 | 16.61 | <.01 |
|-----------------------|-------|------|-------|------|
| Negative mood group   | 1.28  | 0.87 | 1.15  | .14  |
| Finishing the task    | 5.17  | 0.88 | 5.88  | <.01 |
| Number of fish misses | 0.10  | 0.06 | 1.66  | .12  |

Multiple regression analysis for the number of visited ponds. Unstandardised regression coefficients are presented.  $N = 137, R^2 = 0.07, Adj.R^2 = 0.07, F(3,133) = 14.72, p < .01, RSE(133) = 5.01.$ 



#### **Residence time at each pond**

The Likelihood Ratio Test shows that the interaction model is significantly different from the main effect model,  $\chi^2(1) = 5.34$ , p < 0.05.

The Likelihood Ratio Test shows the main effect model is significantly different from the null model,  $\chi^2(1) = 4.13$ , p < 0.05.

#### Discussion

#### References

The mood might affect the content of thoughts and the way how people process information.

– People in a negative mood has more negative evaluation of a situation and process information more thoroughly.

– People in a positive mood has more positive evaluation of a situation and process information more superficially.

Hutchinson, J. M., Wilke, A., & Todd, P. M. (2008). Patch leaving in humans: can a generalist adapt its rules to dispersal of items across patches?. Animal Behaviour, 75(4), 1331-1349. Mehlhorn, K., Newell, B. R., Todd, P. M., Lee, M. D., Morgan, K., Braithwaite, V. A., ... & Gonzalez, C. (2015). Unpacking the Exploration–Exploitation Tradeoff: A Synthesis of Human and Animal Literatures. Mitterschiffthaler, M. T., Fu, C. H., Dalton, J. A., Andrew, C. M., & Williams, S. C. (2007). A functional MRI study of happy and sad affective states induced by classical music. Human brain mapping, 28(11), 1150-1162. Schwarz, N., & Clore, G. L. (2003). Mood as information: 20 years later. Psychological Inquiry, 14(3-4), 296-303.

> E-mail: yshevche@mail.uni-mannheim.de http://yuryshevchenko.com/