The stability of objective numeracy: A seven-year longitudinal study

Marcus Mayorga
University of Oregon, Decision Research

Abstract

Prior research has demonstrated the importance of numeracy in judgment and decision-processing in health and financial domains. However, little is known about how numeracy changes over the lifespan and if individual ability remains stable over time. We mined data from the Decision Research web panel-a diverse group of Americans-to track numerical ability over a seven-year period. Results indicated that numeracy (assessed using the 8 -item scale from Weller et al., 2013) decreased slightly over time. Significant predictors of initial objective numeracy included gender and IQ, but not age, education, subjective numeracy, nor use of math in an occupation.

Methods

The Decision Research web panel, a diverse sample of US citizens, was surveyed 3 times (in unrelated studies) over the course of 7 years. The panel completed the first assessment in 2008 ($\mathrm{N}=1283$), the second in 2013 ($\mathrm{N}=575$), and the third in 2015 ($\mathrm{N}=639$). 204 participants completed all three waves. Each assessment contained the 8 -item scale from Weller et al. (2013) We also included measures of IQ (T2) and subjective numeracy (T3).

Items from the Objective Numeracy Scale:

1. Imagine that we role a fair, six-sided die 1,000 times. Out of 1,000 roles, how many times do you think the die would come up even (2,4, or 6)? In the BIG BUCKS LOTTERY, the chances of winning a $\$ 10.00$ prize is 1%.
2. What is your best guess about how many people would win a $\$ \mathbf{1 0 . 0 0}$ prize if 1,000 people each by a single ticket to BIG BUCKS?
3. In the ACME PUBLISHING SWEEPSTAKES, the chance of winning a car is 1 in 1,000 . What percent of tickets to ACME PUBLISHING SWEEPSTAKES win a car? If the chance of getting a disease is 10%, how many people would be expected to get the disease out of 1000 ?
, having a ___ \% chance of getting the disease.
Suppose you have a close friend who has a lump in her breast and must have umor and 90 of them do not Of the 10 women who actually have a tumor the mammogram indicates correctly that 9 of them have a tumor and indicates incorrectly that 1 of them does not Of the 90 women who do have a tumor, the mammogram indicates correctly that 81 of them do not have a tumor and indicates incorrectly that 9 of them do have a tumor. The table below summarizes all of this information. Imagine that your friend tests positive (as if she had a tumor), what is the likelihood that she actually has a tumor?
4. A bat and a ball cost $\$ 1.10$ in total. The bat costs $\$ 1.00$ more than the ball How much does the ball cost?
5. In a lake, there is a patch of lilypads. Every day, the patch doubles in size. If it takes 48 days for the patch to cover the entire lake, how long would it take for the patch to cover half of the lake?

Correlations (Means \& SD on Diagonal) ($\mathrm{N}=204$)											
	$\begin{aligned} & \text { Time } 1 \\ & (2008) \end{aligned}$	$\begin{aligned} & T i d e \\ & (2013) \end{aligned}$	Time 3 (2015)	Education	Gender	Age 10	1 C Number I	1 Q Letter	SNS	SNSAbility	SNSPreference
Time 1 (2008)	$\begin{gathered} 4.43 \\ (1.79) \end{gathered}$										
Time 2 (2013)	.693**	$\begin{gathered} 3.68 \\ (1.43) \end{gathered}$									
Time 3 (2015)	.722*	$.627^{\prime \prime}$	$\begin{array}{r} 3.79 \\ (1.37) \end{array}$								
Education	. $268{ }^{\text {** }}$. $268{ }^{* *}$		$\begin{gathered} 28 \% \\ \text { college } \end{gathered}$							
Gender	.325***	. 383 **	. 343 ***	. $286{ }^{* *}$	* $32 \% \mathrm{M}$						
Age	-.246	-. 291	-286"	-. $179{ }^{\circ}$	-.357	(12.26)					
10 Number	. $602{ }^{\text {2* }}$.598**	.503**	. $234{ }^{\text {" }}$. 139^{*}	* - 159	3.63 (2.3)				
$10 . \operatorname{Letters}$.591*	. $479{ }^{*}$.539**	.155*	* 080	- -177^{*}	. 647	${ }_{\text {(1.83) }}^{4.17}$			
SNS	.493**	.411**	. $490{ }^{* *}$. $293{ }^{* *}$	* 348	*-205**	. $436{ }^{* *}$. 331	${ }_{\text {(0.82) }}^{4}$		
SNS-Ability	.493**	. $393{ }^{\prime \prime}$. $472{ }^{*}$	* $288{ }^{\prime \prime}$	* 347	$7^{*}-165^{\circ}$.455*	. $342{ }^{\prime \prime}$	${ }^{\text {. }}$. 951	4.27 (1.19)	
SNS-Preference	. 355	. $331{ }^{\text {"* }}$. $388{ }^{* *}$. $2222^{* *}$. $252^{* *}$	*-223*	. 278 **	. $218{ }^{\text {"* }}$	* .811**	. 592	3.95 (0.62)

Summary

- Significant positive correlations between numeracy measurements
- Negative correlations between age and numeracy measurements
- Positive correlation with education, subjective numeracy, IQ, gender ($0=$ female, $1=$ male)

Results - Modeling

We fit a multi-level model with random intercepts and slopes, predicting baseline numeracy (level-1) and within-person slopes (level-2)

Varibule	${ }^{\text {UGM }}$	$\frac{\text { numaracy over }}{\text { Step }}$	Step 2
	Fived fifects: initil Numeray		
$\mathrm{V}_{\text {on }}$ Iterepert	4.378 (124)	4.578 (.542)	4.09 (098)
$\begin{aligned} & \mathbf{V}_{0} \mathbf{V}_{0} \text { Ame (years) } \end{aligned}$	${ }^{0.1022(.012) * * *}$	-0.088 (078)	- $-102(.012)^{* * *}$
		-0.013 (.008)	
		0.542 (2222)*	$0.885(1.12)^{* * *}$
		0.047 (.065)	
V_{04} SNS Ability \mathbf{Y}_{05} SNS Preference Yo6 Math in Job		0.1855 (1.07)	
		${ }^{0.1055}(1.182)$	
$\mathrm{Y}_{0} 10$-Number Sequence		$0.248 .055)^{* *}$	0.287 (.051)***
Yema-leteter Sequene		$0.295 .065)^{* *}$	0.313 (.063 $)^{* * *}$
	e of chan		
$\mathrm{v}_{\mathrm{v}} \mathrm{A}_{\text {ase }}$	${ }_{\text {a }}^{\text {a }}$		
	${ }^{0.0004(1009)}$		
${ }^{\text {rax }}$			
	${ }^{0.0 .005(0.0269)}$		
v_{2} lo-Number Sequence			-.015(.007)******)
Y_{18} IQ-Letter Sequence σ_{e}^{2} Within-person			-.016 (.008)t
	. 739	0.745	0.651
C2minitiar ick		0801	
${ }^{\text {coser }}$	${ }_{0}^{2.005}$	0.002	0.0009
conichevariance $^{\text {a }}$	-0.115	-0.043	0.021

Mary Kate Tompkins

Ohio State University

Results - Modeling Cont.

Figure: OLS fitted Individual \& Composite slopes/intercepts

- Significant overall negative trend in objective numeracy over time - Gender was a significant positive predictor of numeracy such that being male predicted a higher initial objective numeracy score
- Numerical and Literacy IQ measures were positive predictors of initial numeracy scores
- IQ was found to be a (marginally) negative predictor of slopeHigher IQ -> Quicker decline

Conclusions

- No known research has examined individuals' objective numeracy skills over several years time
- Over a period of 7 years, we observed a significant linear decline in objective numeracy
- There was little variance in the slopes displayed between individuals (figure above)
- Consistent with prior research, men tended to display higher initial numeracy scores than women
- IQ may moderate changes in objective numeracy over time
- We did not find differences in objective numeracy over time related to age nor education, as suggested in other literature - Further research is needed to determine causal relationships and replicate to these findings

Select References

Peters, E., Vastriall, D. ., Slovi., P., Mertz, C. K., Mazzocco, K., \& Dickert, S. (2006). Numeracy and decision
Peters, E., Dieckmann, N...Dixon, A. H. Hibbard, J. H. \& \& Mertz, C. . . (2007). Less is more in presenting quality information to
Consumers. Medical Care Research and Reviev, 64(2), 169-190
 This material is is aseded upporacy work supported by the National Science Foundation.

