Assessing cognitive conflict in the public goods game: A mouse-tracking analysis

Pascal J. Kieslich, University of Mannheim, Germany

Theoretical background

Spontaneous cooperation in social dilemmas

- Theoretical proposition by Rand et al.: 1 General spontaneous tendency to cooperate Effortful deliberation required for defection
- Empirical tests so far mainly based on (manipulation of) **response times** with mixed results ^{2,3}
- As response times may reflect influences of different processes, growing trend to test hypothesis using other process measures ^{2,4}

Response dynamics

- Analysis of response dynamics via mousetracking allows assessing tentative commitment to choice options during decision process ⁵
- From this, measures for cognitive conflict during decision process can be derived 4
- If cooperation is spontaneous tendency, there should be less conflict (i.e. less curved mouse trajectories) for cooperation than defection

Individual differences

- Spontaneous cooperation effect found for some individuals while there is no effect for others ¹
- Recent finding: individual differences related to basic **personality traits** 4,6
- Effect should be stronger for dispositional cooperators as measured through the Honesty-Humility (HH) personality trait

Methods

Repeated binary public goods game

- Participants randomly assigned to groups of 4
- They play 10 rounds of public goods game
- In each round, they decide whether to contribute vs. keep a randomly drawn monetary amount (no feedback provided)
- All contributed amounts are doubled and distributed equally among group members
- Implemented in OpenSesame with Psynteract ⁷
- 122 participants, average total payout 4.67 €

Mouse-tracking

- Click on start button to display amount
- Decision: click on contribute vs. keep button (order counterbalanced between participants)
- Mouse movements recorded every 10 ms in OpenSesame using Mousetrap and analyzed using the mousetrap R package 8
- Conflict assessed via trajectory curvature using the **maximum absolute deviation** (MAD) from idealized path (straight line) (cf. Fig. 1)

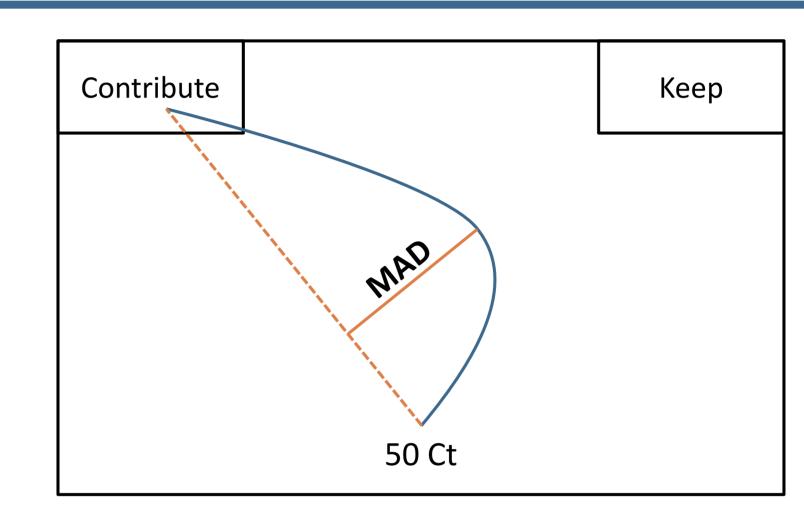


Fig. 1. Mouse-tracking example trial. Movement starts in bottom center of screen. Calculation of maximum absolute deviation (MAD) illustrated.

Results

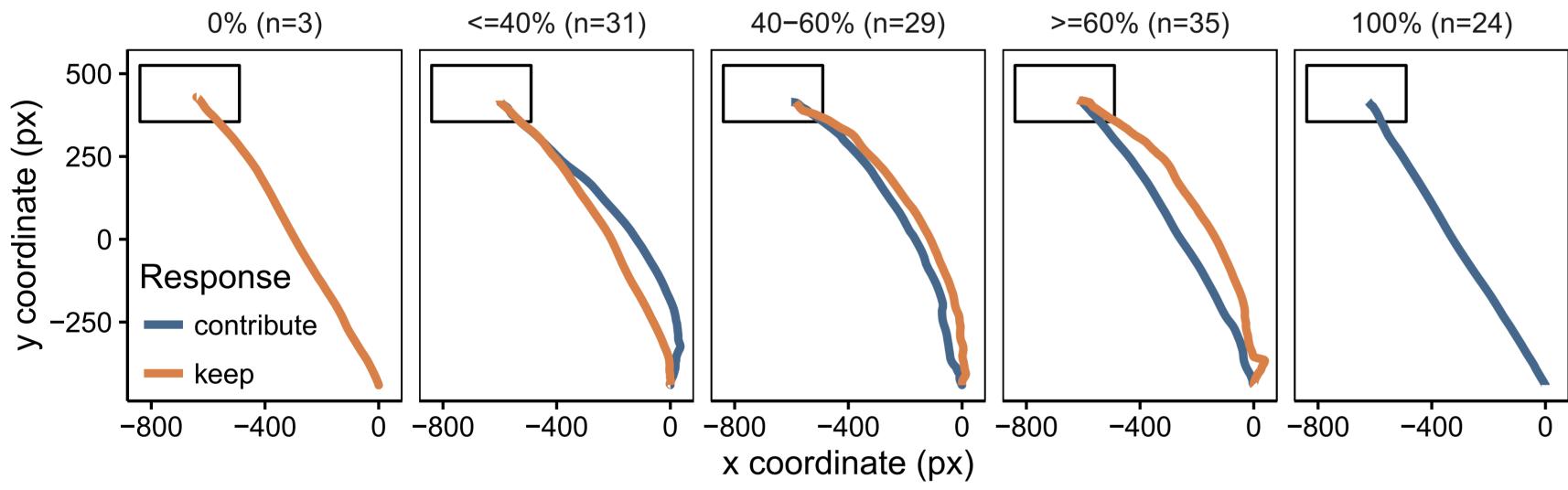


Fig. 2. Average mouse trajectories per response separately for groups of participants with different contribution levels.

Trajectories were remapped to the left and time-normalized. Contribution level is percent of total money contributed.

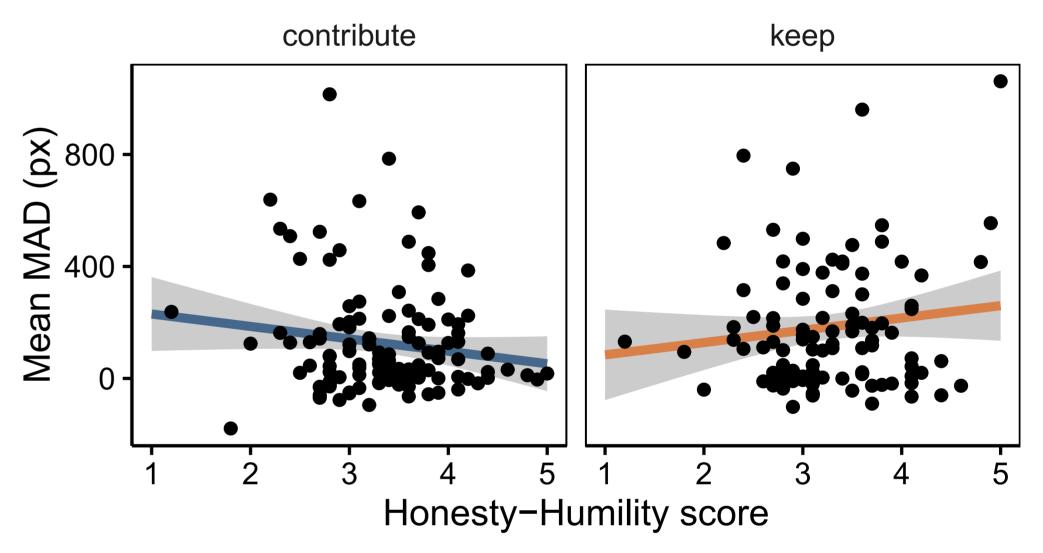


Fig. 3. Mean MAD per response predicted with Honesty-Humility. Linear regression line including 95% confidence band is displayed.

General analysis procedure

- Linear-mixed model predicting trial level MAD allowing for a random intercept per participant
- Comparable results for aggregate data and other measures for trajectory curvature

Analysis I

- Predictors: response (p < .001), contribution level (p = .98) and interaction (p < .001)
- Higher MAD for keep than for contribute trials
- Interaction with contribution level (cf. Fig. 2)

Analysis II

- Predictors: response (p = .03), HH (assessed before game) (p = .72) and interaction (p = .005)
- With increasing HH, MAD increases in keep and decreases in **contribute** trials (cf. Fig. 3)

Discussion

Summary

- Development of binary public goods game with mouse-tracking allows assessing conflict associated with cooperation vs. defection
- On average more conflict when defecting
- However, this varies considerably between participants and can be predicted with situational and dispositional cooperativeness

Analytical challenges

- Several participants always choose contribute (or keep). If they are excluded, mean difference between contribute and keep no longer significant but individual difference findings replicate
- Distribution of raw MAD values is skewed, alternative analysis procedure with MAD type classification leads to comparable results

Relation to previous research

- Extends previous mouse-tracking study 4 from dyadic to group social dilemmas leading to comparable results with simplified paradigm (more suitable for mouse-tracking)
- Contributes to ongoing debate about spontaneous cooperation emphasizing need to investigate and explain interindividual differences

References

- ¹ Rand, D. G., Greene, J. D., & Nowak, M. A. (2012). Spontaneous giving and calculated greed. *Nature*, 489(7416), 427–430.
- ² Rand, D. G. (in press). Cooperation, Fast and Slow: Meta-analytic evidence for a theory of social heuristics and self-interested deliberation. Psychological Science.
- Tinghög, G., Andersson, D., Bonn, C., Böttiger, H., Josephson, C., Lundgren, G., et al. (2013). Intuition and cooperation reconsidered. Nature, 498(7452), E1-E2.
- Kieslich, P. J., & Hilbig, B. E. (2014). Cognitive conflict in social dilemmas: An analysis of response dynamics. Judgment and Decision *Making, 9,* 510-522.
- Spivey, M. J., & Dale, R. (2006). Continuous dynamics in real-time cognition. Current Directions in Psychological Science, 15, 207-211.
- Mischkowski, D., & Glöckner, A. (2016). Spontaneous cooperation for prosocials, but not for proselfs: Social value orientation moderates spontaneous cooperation behavior. Scientific Reports, 6, 21555.
- Henninger, F., Kieslich, P. J., & Hilbig, B. E. (in press). Psynteract: A flexible, cross-platform, open framework for interactive experiments. Behavior Research Methods. https://github.com/psynteract/psynteract-os
- Kieslich, P. J., & Henninger, F. (in preparation). Mousetrap: An integrated, open-source mouse-tracking package. Manuscript in preparation. https://github.com/pascalkieslich/mousetrap-os