Declined Options as Reference Points: Evidence from the Field

> Etan Green Microsoft Research

November 21, 2015

Sunk costs

Arkes & Blumer, 1985; Shefrin & Statman, 1985; Thaler & Johnson, 1990; Odean, 1998; Genesove & Mayer, 2001

Declined options

1. Declining an option makes its counterfactual outcome salient.

- 1. Declining an option makes its counterfactual outcome salient.
- 2. Code gains and losses in relation to counterfactuals. (Kahneman & Tversky, 1979; Kahneman & Miller, 1986; Medvec et al, 1995)

- 1. Declining an option makes its counterfactual outcome salient.
- Code gains and losses in relation to counterfactuals. (Kahneman & Tversky, 1979; Kahneman & Miller, 1986; Medvec et al, 1995)
- 3. Anticipate regretting losses.

(Camille et al, 2004; Coricelli et al, 2005)

- 1. Declining an option makes its counterfactual outcome salient.
- Code gains and losses in relation to counterfactuals. (Kahneman & Tversky, 1979; Kahneman & Miller, 1986; Medvec et al, 1995)
- 3. Anticipate regretting losses. (Camille et al, 2004; Coricelli et al, 2005)
- 4. Avoid anticipated regret.

(Zeelenberg, 1999)

Labor supply

UBER 💛 VIG

Consumption

Design and difficulties

Design:

- 1. Compare those who decline option to those who never receive it.
- 2. Observe subsequent decisions.

Design and difficulties

Design:

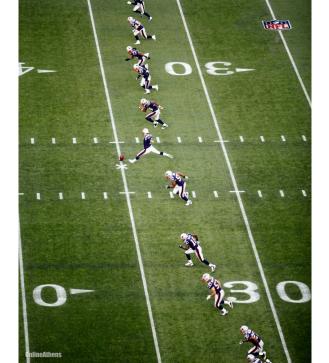
- 1. Compare those who decline option to those who never receive it.
- 2. Observe subsequent decisions.

Problems:

- 1. Those given option may differ from those not given option.
- 2. Those who decline option may differ from those who accept it.

Design and difficulties

Design:


- 1. Compare those who decline option to those who never receive it.
- 2. Observe subsequent decisions.

Problems:

- 1. Those given option may differ from those not given option.
- 2. Those who decline option may differ from those who accept it.

Solution:

- 1. Natural experiment with quasi-random assignment of option.
- 2. Option is almost always declined.

Data

Play-by-play data from NFL kickoffs (2000-10).

- Yard line where kickoff is fielded.
- Touchback decision, if fielded in end zone.
- > Yard line where returner is tackled, if kickoff is returned.

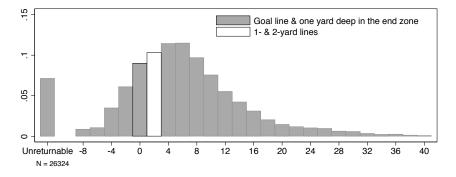
Data

- Play-by-play data from NFL kickoffs (2000-10).
 - Yard line where kickoff is fielded.
 - Touchback decision, if fielded in end zone.
 - > Yard line where returner is tackled, if kickoff is returned.
- Restrict to kickoffs fielded within 2 yards of goal line.

Data

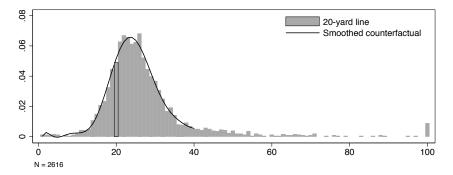
- Play-by-play data from NFL kickoffs (2000-10).
 - Yard line where kickoff is fielded.
 - Touchback decision, if fielded in end zone.
 - > Yard line where returner is tackled, if kickoff is returned.
- Restrict to kickoffs fielded within 2 yards of goal line.
- ▶ 98% of kickoffs fielded from just inside the goal line are returned.

Results

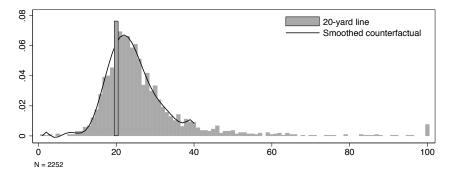

Returners who decline the touchback option are 56% more likely to achieve the 20-yard exactly.

Returners who decline the touchback option are 56% more likely to achieve the 20-yard exactly.

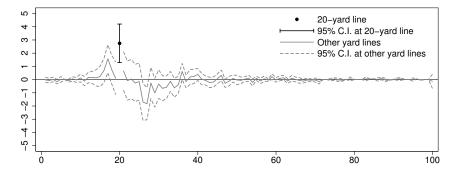
Consistent with loss aversion around the counterfactual outcome of declined option.


No evidence of manipulation near boundary

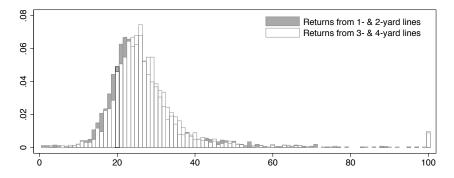
Distribution of kickoff distance


Returns from 1- & 2-yard lines

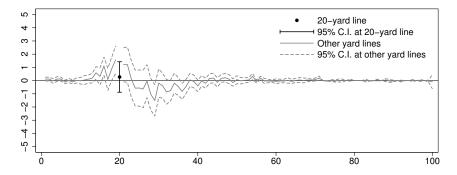
Distribution of return distance


Returns from goal line & 1 yard deep in end zone

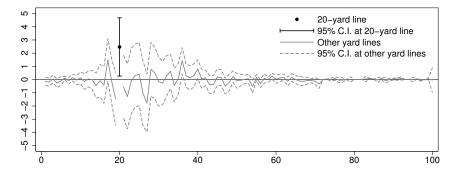
Distribution of return distance


Treatment effect

Difference in distributions of return distance across goal line


Head start

Distributions of return distance


Head-start effect

Difference in distributions of return distance across 2-yard line

Difference in difference

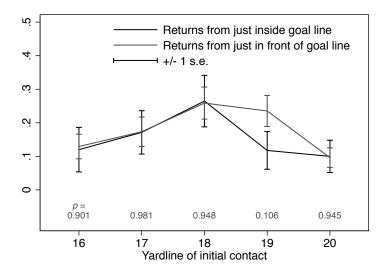
Difference between treatment effect and head-start effect

Interpretations

- 1. Intrinsic motivation
 - Loss-averse effort provisioning, with diminishing sensitivity, by returner around counterfactual outcome of declined option.

Interpretations

- 1. Intrinsic motivation
 - Loss-averse effort provisioning, with diminishing sensitivity, by returner around counterfactual outcome of declined option.
- 2. Extrinsic motivation from coaches or fans.


Interpretations

- 1. Intrinsic motivation
 - Loss-averse effort provisioning, with diminishing sensitivity, by returner around counterfactual outcome of declined option.
- 2. Extrinsic motivation from coaches or fans.
- 3. Mercy by game officials.

Appendix

Falling forward for a yard

P(tackle at 20|initial contact at y) for returns within 2 yards of goal line

Overview of model

 \triangleright R and K run towards each other until contact

Overview of model

- ► R and K run towards each other until contact
- Assume tackle happens at y_{contact} or $y_{\text{contact}} + 1$

 $\begin{aligned} P(\text{tackle at } y) &= P(\text{contact at } y) \cdot P(\text{tackle}|\text{contact}) \\ &+ P(\text{contact at } y - 1) \cdot (1 - P(\text{tackle}|\text{contact})) \end{aligned}$

Overview of model

- ► R and K run towards each other until contact
- Assume tackle happens at y_{contact} or $y_{\text{contact}} + 1$

$$\begin{aligned} P(\text{tackle at } y) &= P(\text{contact at } y) \cdot P(\text{tackle}|\text{contact}) \\ &+ P(\text{contact at } y - 1) \cdot (1 - P(\text{tackle}|\text{contact})) \end{aligned}$$

Assume P(contact at y) is "smooth"

Overview of model

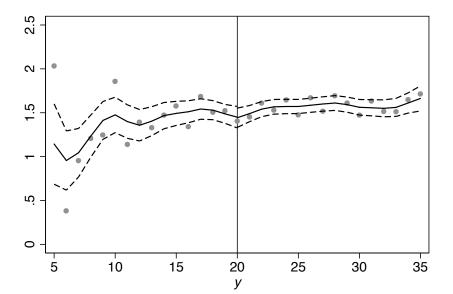
- R and K run towards each other until contact
- Assume tackle happens at y_{contact} or $y_{\text{contact}} + 1$

$$\begin{aligned} P(\text{tackle at } y) &= P(\text{contact at } y) \cdot P(\text{tackle}|\text{contact}) \\ &+ P(\text{contact at } y - 1) \cdot (1 - P(\text{tackle}|\text{contact})) \end{aligned}$$

- Assume P(contact at y) is "smooth"
- At contact, R and K simultaneously choose effort $e \in \{H, L\}$
 - $e_R = H \Rightarrow \downarrow P(\text{tackle}|\text{contact}); e_K = H \Rightarrow \uparrow P(\text{tackle}|\text{contact})$
 - e^H is costly

Overview of model

- \triangleright R and K run towards each other until contact
- Assume tackle happens at y_{contact} or $y_{\text{contact}} + 1$


$$\begin{aligned} P(\text{tackle at } y) &= P(\text{contact at } y) \cdot P(\text{tackle}|\text{contact}) \\ &+ P(\text{contact at } y - 1) \cdot (1 - P(\text{tackle}|\text{contact})) \end{aligned}$$

- Assume P(contact at y) is "smooth"
- At contact, R and K simultaneously choose effort $e \in \{H, L\}$
 - $e_R = H \Rightarrow \downarrow P(\text{tackle}|\text{contact}); e_K = H \Rightarrow \uparrow P(\text{tackle}|\text{contact})$ • e^H is costly

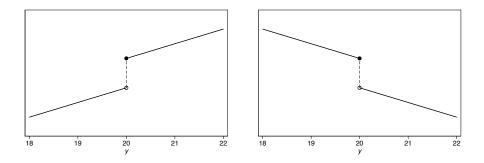
Find $\{e_R^*, e_K^*\}$ at each yard line of contact given preferences over y

Normative preferences

Average number of points scored on drives that start at y.

Reference-independent (RI) value function

$$b_{R}^{RI}(y) = m(y-20)$$


$$b_{K}^{RI}(y) = m(20-y)$$

$$b_{K}^{RI}(y) = m(20-y)$$

$$b_{K}^{RI}(y) = m(20-y)$$

Loss-averse (LA) value function

$$b_{R}^{LA}(y) = \begin{cases} m(y-20) & y \ge 20\\ m(y-20) - \Delta & y < 20 \end{cases} \qquad b_{K}^{LA}(y) = \begin{cases} m(20-y) - \Delta & y > 20\\ m(20-y) & y \le 20 \end{cases}$$

Equilibrium effort levels $\{e_R, e_K\}$

Yard line of contact

			19		
RI	RI	$\{L, L\}$	$\{L, L\}$	$\{L, L\}$	$\{L, L\}$
LA	RI	$\{L, L\}$	$ \begin{array}{c} \{L,L\} \\ \{H,L\} \end{array} $	$\{L, L\}$	$\{L, L\}$
RI	LA	$\{L, L\}$	$\{L, L\}$	$\{L, H\}$	$\{L, L\}$

Equilibrium effort levels $\{e_R, e_K\}$

Yard line of contact

b _R	b _K	18	19	20	21
RI	RI	$\{L, L\}$	$\{L, L\}$	$\{L, L\}$	$\{L, L\}$
LA	RI	$\{L, L\}$	$ \begin{array}{l} \{L,L\} \\ \{H,L\} \end{array} $	$\{L, L\}$	$\{L, L\}$
RI	LA	$\{L, L\}$	$\{L, L\}$	$\{L, H\}$	$\{L, L\}$
LA	LA	$\{L, L\}$	$\{H, L\}$	$\{L, H\}$	$\{L, L\}$

1. If $R \to RI$ and $K \to RI$, P(tackle at y) is "smooth" at the 20.

1. If $R \to \text{RI}$ and $K \to \text{RI}$, P(tackle at y) is "smooth" at the 20. 2. If $R \to \text{LA}$ and $K \to \text{RI}$, P(tackle at y) jumps at 20 from left.

1. If $R \to \text{RI}$ and $K \to \text{RI}$, P(tackle at y) is "smooth" at the 20. 2. If $R \to \text{LA}$ and $K \to \text{RI}$, P(tackle at y) jumps at 20 from left. 3. If $R \to \text{RI}$ and $K \to \text{LA}$, P(tackle at y) jumps at 20 from right.

- 1. If $R \to RI$ and $K \to RI$, P(tackle at y) is "smooth" at the 20.
- 2. If $R \to LA$ and $K \to RI$, P(tackle at y) jumps at 20 from left.
- 3. If $R \to RI$ and $K \to LA$, P(tackle at y) jumps at 20 from right.
- 4. If $R \to LA$ and $K \to LA$, P(tackle at y) spikes at 20.

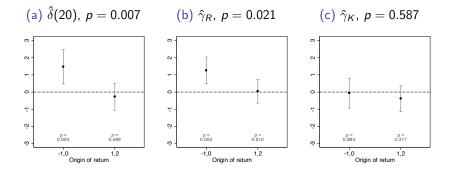
Loss aversion by R or K?

 γ_{R} : displacement from 19- to 20-yard line γ_{K} : displacement from 21- to 20-yard line

Loss aversion by R or K?

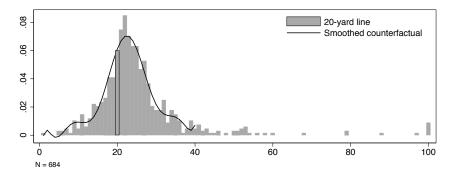
 γ_R : displacement from 19- to 20-yard line γ_K : displacement from 21- to 20-yard line

$$\delta_{19} + \gamma_R = \delta_{20} - \gamma_R - \gamma_K = \delta_{21} + \gamma_K$$

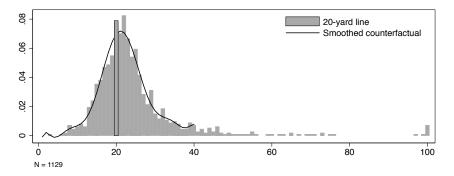

Loss aversion by R or K?

 γ_R : displacement from 19- to 20-yard line γ_K : displacement from 21- to 20-yard line

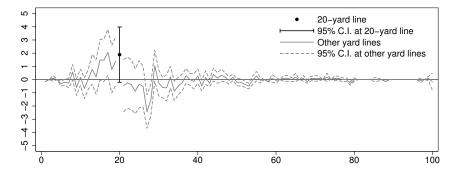
$$\delta_{19} + \gamma_R = \delta_{20} - \gamma_R - \gamma_K = \delta_{21} + \gamma_K$$


$$\gamma_R = rac{1}{3}(\delta_{21} + \delta_{20} - 2\delta_{19}) \qquad \gamma_K = rac{1}{3}(\delta_{19} + \delta_{20} - 2\delta_{21})$$

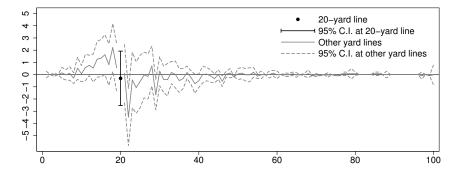
Mass displacement estimates


Returns from 1- & 2-yard lines (after)

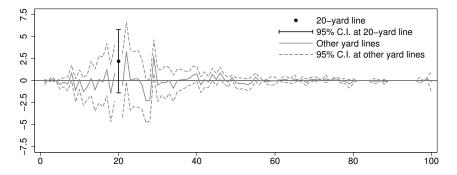
Distribution of return distance


Returns from goal line & 1 yard deep in end zone (after)

Distribution of return distance


Treatment effect (after)

Difference in distributions of return distance across goal line


Head-start effect (after)

Difference in distributions of return distance across 2-yard line

Difference in difference (after)

Difference between treatment effect and head-start effect

