Declined Options as Reference Points: Evidence from the Field

Etan Green
Microsoft Research

November 21, 2015

Sunk costs

Arkes \& Blumer, 1985; Shefrin \& Statman, 1985; Thaler \& Johnson, 1990; Odean, 1998; Genesove \& Mayer, 2001

Declined options

Declined options provide reference points

1. Declining an option makes its counterfactual outcome salient.

Declined options provide reference points

1. Declining an option makes its counterfactual outcome salient.
2. Code gains and losses in relation to counterfactuals.
(Kahneman \& Tversky, 1979; Kahneman \& Miller, 1986; Medvec et al, 1995)

Declined options provide reference points

1. Declining an option makes its counterfactual outcome salient.
2. Code gains and losses in relation to counterfactuals.
(Kahneman \& Tversky, 1979; Kahneman \& Miller, 1986; Medvec et al, 1995)
3. Anticipate regretting losses.
(Camille et al, 2004; Coricelli et al, 2005)

Declined options provide reference points

1. Declining an option makes its counterfactual outcome salient.
2. Code gains and losses in relation to counterfactuals.
(Kahneman \& Tversky, 1979; Kahneman \& Miller, 1986; Medvec et al, 1995)
3. Anticipate regretting losses.
(Camille et al, 2004; Coricelli et al, 2005)
4. Avoid anticipated regret.
(Zeelenberg, 1999)

Labor supply

Consumption

Design and difficulties

Design:

1. Compare those who decline option to those who never receive it.
2. Observe subsequent decisions.

Design and difficulties

Design:

1. Compare those who decline option to those who never receive it.
2. Observe subsequent decisions.

Problems:

1. Those given option may differ from those not given option.
2. Those who decline option may differ from those who accept it.

Design and difficulties

Design:

1. Compare those who decline option to those who never receive it.
2. Observe subsequent decisions.

Problems:

1. Those given option may differ from those not given option.
2. Those who decline option may differ from those who accept it.

Solution:

1. Natural experiment with quasi-random assignment of option.
2. Option is almost always declined.

Data

- Play-by-play data from NFL kickoffs (2000-10).
- Yard line where kickoff is fielded.
- Touchback decision, if fielded in end zone.
- Yard line where returner is tackled, if kickoff is returned.

Data

- Play-by-play data from NFL kickoffs (2000-10).
- Yard line where kickoff is fielded.
- Touchback decision, if fielded in end zone.
- Yard line where returner is tackled, if kickoff is returned.
- Restrict to kickoffs fielded within 2 yards of goal line.

Data

- Play-by-play data from NFL kickoffs (2000-10).
- Yard line where kickoff is fielded.
- Touchback decision, if fielded in end zone.
- Yard line where returner is tackled, if kickoff is returned.
- Restrict to kickoffs fielded within 2 yards of goal line.
- 98% of kickoffs fielded from just inside the goal line are returned.

Results

Returners who decline the touchback option are 56% more likely to achieve the 20 -yard exactly.

Results

Returners who decline the touchback option are 56% more likely to achieve the 20 -yard exactly.

Consistent with loss aversion around the counterfactual outcome of declined option.

No evidence of manipulation near boundary

Distribution of kickoff distance

Returns from 1- \& 2-yard lines

Distribution of return distance

Returns from goal line \& 1 yard deep in end zone

Distribution of return distance

Treatment effect

Difference in distributions of return distance across goal line

Head start

Distributions of return distance

Head-start effect

Difference in distributions of return distance across 2-yard line

Difference in difference

Difference between treatment effect and head-start effect

Interpretations

1. Intrinsic motivation

- Loss-averse effort provisioning, with diminishing sensitivity, by returner around counterfactual outcome of declined option.

Interpretations

1. Intrinsic motivation

- Loss-averse effort provisioning, with diminishing sensitivity, by returner around counterfactual outcome of declined option.

2. Extrinsic motivation from coaches or fans.

Interpretations

1. Intrinsic motivation

- Loss-averse effort provisioning, with diminishing sensitivity, by returner around counterfactual outcome of declined option.

2. Extrinsic motivation from coaches or fans.
3. Mercy by game officials.

Appendix

Falling forward for a yard

$P($ tackle at $20 \mid$ initial contact at $y)$ for returns within 2 yards of goal line

Overview of model

- R and K run towards each other until contact

Overview of model

- R and K run towards each other until contact
- Assume tackle happens at $y_{\text {contact }}$ or $y_{\text {contact }}+1$
$P($ tackle at $y)=P($ contact at $y) \cdot P($ tackle \mid contact $)$
$+P($ contact at $y-1) \cdot(1-P($ tackle \mid contact $))$

Overview of model

- R and K run towards each other until contact
- Assume tackle happens at $y_{\text {contact }}$ or $y_{\text {contact }}+1$
$P($ tackle at $y)=P($ contact at $y) \cdot P($ tackle \mid contact $)$

$$
+P(\text { contact at } y-1) \cdot(1-P(\text { tackle } \mid \text { contact }))
$$

- Assume P (contact at y) is "smooth"

Overview of model

- R and K run towards each other until contact
- Assume tackle happens at $y_{\text {contact }}$ or $y_{\text {contact }}+1$
$P($ tackle at $y)=P($ contact at $y) \cdot P($ tackle \mid contact $)$

$$
+P(\text { contact at } y-1) \cdot(1-P(\text { tackle } \mid \text { contact }))
$$

- Assume P (contact at y) is "smooth"
- At contact, R and K simultaneously choose effort $e \in\{H, L\}$
- $e_{R}=H \Rightarrow \downarrow P$ (tackle|contact); $e_{K}=H \Rightarrow \uparrow P$ (tackle|contact)
- e^{H} is costly

Overview of model

- R and K run towards each other until contact
- Assume tackle happens at $y_{\text {contact }}$ or $y_{\text {contact }}+1$
$P($ tackle at $y)=P($ contact at $y) \cdot P($ tackle \mid contact $)$

$$
+P(\text { contact at } y-1) \cdot(1-P(\text { tackle } \mid \text { contact }))
$$

- Assume P (contact at y) is "smooth"
- At contact, R and K simultaneously choose effort $e \in\{H, L\}$
- $e_{R}=H \Rightarrow \downarrow P$ (tackle|contact); $e_{K}=H \Rightarrow \uparrow P$ (tackle|contact)
- e^{H} is costly
- Find $\left\{e_{R}^{*}, e_{K}^{*}\right\}$ at each yard line of contact given preferences over y

Normative preferences

Average number of points scored on drives that start at y.

Reference-independent (RI) value function

$$
b_{R}^{R I}(y)=m(y-20)
$$

$$
b_{K}^{R I}(y)=m(20-y)
$$

Loss-averse (LA) value function

$$
b_{R}^{L A}(y)= \begin{cases}m(y-20) & y \geq 20 \\ m(y-20)-\Delta & y<20\end{cases}
$$

$$
b_{K}^{L A}(y)= \begin{cases}m(20-y)-\Delta & y>20 \\ m(20-y) & y \leq 20\end{cases}
$$

Nash equilibrium effort levels

Equilibrium effort levels $\left\{e_{R}, e_{K}\right\}$

	Yard line of contact				
b_{R}	b_{K}	18	19	20	21
RI	RI	$\{L, L\}$	$\{L, L\}$	$\{L, L\}$	$\{L, L\}$

Nash equilibrium effort levels

Equilibrium effort levels $\left\{e_{R}, e_{K}\right\}$

	Yard line of contact				
b_{R}	b_{K}	18	19	20	21
RI	RI	$\{L, L\}$	$\{L, L\}$	$\{L, L\}$	$\{L, L\}$
LA	RI	$\{L, L\}$	$\{H, L\}$	$\{L, L\}$	$\{L, L\}$

Nash equilibrium effort levels

Equilibrium effort levels $\left\{e_{R}, e_{K}\right\}$

	Yard line of contact				
b_{R}	b_{K}	18	19	20	21
RI	RI	$\{L, L\}$	$\{L, L\}$	$\{L, L\}$	$\{L, L\}$
LA	RI	$\{L, L\}$	$\{H, L\}$	$\{L, L\}$	$\{L, L\}$
RI	LA	$\{L, L\}$	$\{L, L\}$	$\{L, H\}$	$\{L, L\}$

Nash equilibrium effort levels

Equilibrium effort levels $\left\{e_{R}, e_{K}\right\}$

	Yard line of contact				
b_{R}	b_{K}	18	19	20	21
RI	RI	$\{L, L\}$	$\{L, L\}$	$\{L, L\}$	$\{L, L\}$
LA	RI	$\{L, L\}$	$\{H, L\}$	$\{L, L\}$	$\{L, L\}$
RI	LA	$\{L, L\}$	$\{L, L\}$	$\{L, H\}$	$\{L, L\}$
LA	LA	$\{L, L\}$	$\{H, L\}$	$\{L, H\}$	$\{L, L\}$

Predictions

1. If $R \rightarrow \mathrm{RI}$ and $K \rightarrow \mathrm{RI}, P$ (tackle at y) is "smooth" at the 20 .

Predictions

1. If $R \rightarrow \mathrm{RI}$ and $K \rightarrow \mathrm{RI}, P($ tackle at $y)$ is "smooth" at the 20 .
2. If $R \rightarrow \mathrm{LA}$ and $K \rightarrow \mathrm{RI}, P($ tackle at $y)$ jumps at 20 from left.

Predictions

1. If $R \rightarrow \mathrm{RI}$ and $K \rightarrow \mathrm{RI}, P($ tackle at $y)$ is "smooth" at the 20 .
2. If $R \rightarrow \mathrm{LA}$ and $K \rightarrow \mathrm{RI}, P($ tackle at $y)$ jumps at 20 from left.
3. If $R \rightarrow \mathrm{RI}$ and $K \rightarrow \mathrm{LA}, P$ (tackle at y) jumps at 20 from right.

Predictions

1. If $R \rightarrow \mathrm{RI}$ and $K \rightarrow \mathrm{RI}, P($ tackle at $y)$ is "smooth" at the 20 .
2. If $R \rightarrow \mathrm{LA}$ and $K \rightarrow \mathrm{RI}, P$ (tackle at y) jumps at 20 from left.
3. If $R \rightarrow \mathrm{RI}$ and $K \rightarrow \mathrm{LA}, P($ tackle at $y)$ jumps at 20 from right.
4. If $R \rightarrow \mathrm{LA}$ and $K \rightarrow \mathrm{LA}, P($ tackle at $y)$ spikes at 20 .

Loss aversion by R or K ?

γ_{R} : displacement from 19- to 20-yard line γ_{K} : displacement from 21- to 20-yard line

Loss aversion by R or K ?

γ_{R} : displacement from 19- to 20-yard line γ_{K} : displacement from 21- to 20-yard line

$$
\delta_{19}+\gamma_{R}=\delta_{20}-\gamma_{R}-\gamma_{K}=\delta_{21}+\gamma_{K}
$$

Loss aversion by R or K ?

γ_{R} : displacement from 19- to 20-yard line γ_{K} : displacement from 21- to 20-yard line

$$
\delta_{19}+\gamma_{R}=\delta_{20}-\gamma_{R}-\gamma_{K}=\delta_{21}+\gamma_{K}
$$

$$
\gamma_{R}=\frac{1}{3}\left(\delta_{21}+\delta_{20}-2 \delta_{19}\right) \quad \gamma_{K}=\frac{1}{3}\left(\delta_{19}+\delta_{20}-2 \delta_{21}\right)
$$

Mass displacement estimates

(a) $\hat{\delta}(20), p=0.007$

(b) $\hat{\gamma}_{R}, p=0.021$

(c) $\hat{\gamma}_{K}, p=0.587$

Returns from 1- \& 2-yard lines (after)

Distribution of return distance

Returns from goal line \& 1 yard deep in end zone (after)

Distribution of return distance

Treatment effect (after)

Difference in distributions of return distance across goal line

Head-start effect (after)

Difference in distributions of return distance across 2-yard line

Difference in difference (after)

Difference between treatment effect and head-start effect

