Yes-No Sieve for Logical Operators

Matthew J. Shanahan

Western University - Canada, Department of Psychology, London, Ontario, Canada, Correspondence: mshanah@uwo ca Society for Judgment and Decision-Making, $\mathbf{3 6}^{\text {th }}$ Annual Conference, Chicago, Illinois, U.S.A
Conseil de recherches en Canadal Western \%

Truth tables (Post, 1921; Wittgenstein, 1922) classify 16 logical operators between two yesno propositions (e.g., 'p' and ' q ') that produce offspring yes-no (' r ') values. A Boolean algebra
sieve allows for detection of the dominant logical operator, if present, within apparently seave allows or deetection ref the dominant logical operator, if present, within apparently 58% positive identification, a logical operator-generated list is 100% compatible with the operator or 0% compatible with its complement. This sieve can guide research design efinements by probabilistically identifying logical relations between variables when initial

Rationale

Truth tables (Post, 1921; Wittgenstein, 1922) allow for classification of 16 logical operators between two propositions (e.g.,., a and qq) with all combinations of true and false values that
produce in turn all possible true or false offspring proposition (r) values. Detecting what produce in turn all possible true or false offspring proposition (r) values. Detecting what
relation (logical operator) two 'states of affairs' have to the occurrence of another can be do relation (logical operator) two 'states of affairs' have to the occurrence of another can be
quite practically using a Boolean sieve. Simulation work allows for perfect detection and quite practically using a Booleant sieve. Simulation work allows for perfect detection and expected proportions among several competitors. Specifically, a random list of 100 values of 1 or 0 with equal likelihood returns a proportion between 43% and 58% when sifted through the algee
binary sieve. When a specific operator is used to generate a list of 100 values of 1 or 0 , perfect binary sieve. When a specific operator is used to generate a list of 100 values of 1 or 0 , perf
identification can be had either by a 100% match to the operator values or 0% match to its complement. This procedure has been instantiated with operator E ('Neither or Both') and its perfect
complement, operator J ('Only One'). This contrasts with continued stochastic drift around 50% for its fair competitors, each also having a 50% expectancy, namely the complementary operators G and proposition q with result r is identified as operator E, such that occurrence r is the case either when both p and q are not the case, or when p and q are both the case. Across the 16 operators in the Truth Table paradigm, listed by operator letter convention and practical descriptive, one complemen
is suited to 100%-0\% expectancy: V-O 'Always', Never') four are apolicable to a 75% - 25% is suited to $100 \%-0 \%$ expectancy; $V-O$ ('Always', 'Never'), four are applicable to a $75 \%-25 \%$
expectancy: $A-X$ ('All but Both', 'Only Both'); C - L'All but p only', 'Only ${ }^{\text {P }}$ '; $\mathrm{B}-\mathrm{M}$ ('All but o on
 the dataset: $G-H$ ('p', 'Not p^{\prime} '; $\mathrm{F}-1$ ('q', 'Not q^{\prime} ', and $\mathrm{E}-J$ ('Neither or Both', 'Only One'). This type o contains only clear presence-absence signal for states of affairs p and q and occurrence r.

Introduction

The premise of this work is charting the relation between three 'states of affairs', or truth conditions A, B, and C. Specifically, if truth states " A " and " B " can be ascertained and indexed to truth state " C ", then the necessary, partial, or lack of relation between A and B in relation to he state or C can be evaluated mitite tirangulations, especialy as feasible in large d

In speaking of truth states, truth tables are an exhaustive formulation of the possible relation between A, B, and their (posited) result, C. Truth tables as typically arranged are depicted in Table 1, below. A charting 'positive space' between the four possible points in a cube defined by corners (x, y, z) corresponding to
truth values of A, B, and C, together with interim values along a plausible curved surface, as per the 'product equation' columns in Table 1. What is potentially useful about these surface is that they preserve a single equational definition to a continuous surface that links the four possible truth table endpoints.
Table 1
Characteristics of the Sixteen Logical Operators arranged by Eight Complementary Pairs

Method

Figures below depict a plausible, single-equation surface connecting the 'four pillars' (truth table pairing of A and B values: TT,TF,FT, FF) with the value for C, the 'height' value. Values of A, B, and
 axis (far left). The origin ($0,0,0$) is in the foreground for comparison. An interval of .1 is used for the gridlines (MATLAB 3-D plot function). Figures are arranged in families' by row. Row 1 figures have our identical heights, Row 2 , three low points, Row 3, three high, Row 4, diagonal high points, Rows 5 and 6 , single edge high points.

Simulation Results

The system of equations that depicts the product surfaces (some kind of multiplication) can also be used as a filter for presence absence pattern. Each equation generates a unique and constant four digit binary signature in a two by two configuration for the C value base occurrence of the particular logical relation can be detected uniformly across all four possible manifestations of the arrangement of A and B values.
A simulation was undertaken to study the sensitivity of the system of logical operato equations to logical operators in three data sets constructed with pure, random, and mixed generation of the large binary sample from a specific equation, from a random seed, and from a combination of the two. The pure sample showed a perfect match (100%) with the operator that generated it, while retaining a $50-50$ distribution of true and false values. The random sample matched evenly with all $50 \%-50 \%$ operators, ranging from 43% to 58%. A confirming operator, suggesting that only eight equations are needed with perfect complementarity. Similar tests showed that the same phenomena occurred, within stochastic variance of random procedures, for the 25-75, and 0-100 distributions of true and false values

Potential Applications

Decision-making for the design and interpretation of experiments is central to scientific research. The soft sciences (Psychology, Sociology, Economics) often use distributions, ranges of errors, and correlational work to reflect the 'soff' nature of the latent constructs studied. By contrast, hard sciences (Physics, Chemistry, Engineering), although they access
ranges of measurement error, often benefit from the assumption of an immutable, tangible quantity as the target of measurement (How much force? What is the chemical content? What are the logical components of a system). The approach delineated here uses the concept of experimental space used for example in Engineering (points on a binary cube) for
 Hunter, \& Hunter, 1978)
The addition with the present approach is the feasibility of examining in-between spaces with an integrated a priori set of expectations (cf. decisional control model in Shanahan \& Neufeld, 2010), generated by the system of equations, that is particularly applicable where there is an interaction between the two independent variables (A and B, as x and y; see e.g., Kirk, 1982). Such spaces may be propitious to examine when value for A and B are more easily obtained as proportions or probabilities (between 0.0 and 1.0). As such, a correlation value for A and a threshold for C , such as $.50, .60$. or .95 , especially where A and B may interact. Areas in indigo and dark blue on the set of figures (center panel) reflect a tikelihood of C clearly below .50 ; areas in orange, and yellow reflect a likelihood above . 50 . Areas in green, teal, light blue

Conclusion

The ability to identify zones of likely experimental effect is valuable in allocating research resources. If a fundamental relation between independent binary predictors A and B with dependent observed variable C can be established by looking at previous data, targeted experimentation can examine other points on the continuous experimental surface linking all

References

Box, G. E., Hunter, W. G., \& Hunter, J. S. (1978). Statistics for experimenters. Kirk, R. E. (1982). Experimental design. John Wiley \& Sons, Inc Post, E. L. (1921). Introduction to a general theory of elementary propositions. American journal of mathematics, 163-185.
Shanahan, M. J., \& Neufeld, R. W. (2010). Coping with stress through decisional control: Quantification of negotiating the environment. British Journal of Mathematical and Statistical sychology, 63(3), 575-601.

Wittgenstein, L. (1922). Ogden, CK (translator)(1999). Tractatus Logico nilosophicus. London Part,

