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Neural Network Modeling of Developmental and Attentional Biases in 
Decision Making 

Abstract 
Preference decisions between probabilistic alternatives are modeled by a neural network 
including several brain regions.  The network reproduces data whereby small probabilities 
are most overweighted for affectively rich outcomes.  The network also reproduces data 
whereby framing effects increase when possible zero outcomes are salient.  Model 
equations contain randomly varying parameters to simulate individual differences. 
  
The network classifies options via unequally weighted attributes, with non-numerical 
attributes emphasized under emotional arousal.  Weights emerge in development via a 
supervised algorithm identifying attributes that most clearly differentiate consequences.  
The neural transmitter acetylcholine sets the classification criterion.  The transmitter 
dopamine mediates emotional value learning. 
Some of this work is published in Levine, Cognitive Systems Research, 15-16, 57-72, 
2012, and  AlQaudi, Levine, and Lewis, Proceedings of IJCNN 2015. 
 

Neural Network Structure 
The model structure combines roles of several brain regions and parts of existing theories: 
adaptive resonance theory of categorization (Carpenter & Grossberg, 1987); emotion-
influenced selective attention (Grossberg & Levine, 1975); gated dipole theory of 
affective contrasts (Grossberg & Gutowski, 1987);  fuzzy trace theory of memory (Reyna 
& Brainerd, 2008).  
 
Fuzzy trace theory: information is encoded in two ways: verbatim encoding (literal 
storage of facts) vs. gist encoding (storing intuitive meanings).  Gist encoding of 
probabilities tends toward all-or-none representations of risk.  That is, the gist encoding 
perceives gambles as “certainty,” “no chance,” or “some chance” of a particular gain or 
loss, largely neglecting precise probabilities of that gain or loss.  Hence, gist encoding 
tends to reduce the relative attractiveness of sure losses and enhance the relative 
attractiveness of sure gains in comparison with risky alternatives.  
 
Amygdala and orbitofrontal cortex (OFC) are both involved in emotional encoding and 
are connected by reciprocal pathways. Stimulus-reinforcement associations can be more 
rapidly learned and reversed by OFC neurons than by amygdala neurons (Rolls, 2006). 
This suggests a hierarchical relationship: OFC representations of emotional stimuli are 
more influenced by higher-order cognition than are amygdalar representations.  
 
Adaptive resonance theory (ART) models hierarchical relationships between two layers. 
Nodes at the “higher” level  F2 (OFC here) encode categories of activity patterns at 
“lower” level F1 (amygdala here).  ART includes a “reset” that becomes active when a 
pattern does not match a previously stored prototype.  Matching is across unequally 
weighted attributes. Reset is identified with anterior cingulate (ACC), which is active in 
conflict or error detection.  
 
Gated dipole theory: to get OFC reset, each F2 category is coded by a gated dipole, an 
opponent processing network with two channels of opposite meaning (e.g., positive and 
negative affect, or category activity and inactivity). Habituating neurotransmitters make 
one channel transiently active (rebound) when activity of the other channel decreases. 
Rebound requires nonspecific arousal. Amygdala dipoles encode attributes.  Affect toward 
an option’s attribute level depends on counterfactual comparisons with other options. 
 
Action network. Signals carrying information that particular actions have good or bad 
consequences pass from the amygdala to the action gate in the basal ganglia.  Appetitive 
signals facilitate the direct pathway, which excites the motor cortex. Aversive signals 
facilitate the indirect pathway, which inhibits the motor cortex.  The gate opens when the 
direct pathway input sufficiently counteracts the indirect pathway input.  
 
 

Network and Simulations 
Two options are represented by here are two inputs A and B to the network.   Each run is 
assumed to represent a different experimental participant. The inputs A and B each have 
three attributes: Possibility of gain (value of 1 or 0); Possibility of no gain (value of 1 or 0); 
Probability of gain (continuum of values from 0 to 1).  Each attribute is represented by a 
separate dipole at the amygdala.  Each amygdalar dipole includes positive and negative 
input nodes x1i
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There are five categories at the F2 (OFC) level, each with its own gated dipole. The five 
categories represent: (1) sure gain; (2) sure non-gain; (3) tossup between gain and non-
gain; (4) almost impossible gain; (5) almost certain gain. 

 
2012 article reproduced data of Rottenstreich and Hsee (2001) on risky choices of kiss 
versus money.  2015 conference paper reproduced data of Reyna and Brainerd (1991) and 
of Kühberger and Tanner (2010) on framing in the Asian Disease Problem: increased 
framing if nonzero complements removed, decreased or no framing if zero complements 
removed. 
 
Gain frame: 
If  Program A is adopted, 200 people will be saved. 
If Program B is adopted, there is a one-third probability that 600 people will be saved 
(nonzero complement) and a two-thirds probability that no people will be saved (zero 
complement). 
  
Loss frame: 
If  Program C is adopted, 400 people will die. 
If  Program D is adopted, there is a one-third probability that nobody will die (zero 
complement) and a two-thirds probability that 600 people will die (nonzero complement). 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Reyna-Brainerd and Kühberger-Tanner data and 
simulations. Vertical axis is percentage of choices of 
the gamble over the sure thing: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

How might the gist categories of options be learned 
over the course of development (speculation):  
Hippocampus encodes episodes in which a category is presented.  This leads to 
representations of the associations between (linguistic) inputs and their consequences. 
 
Then how do some attributes get selectively emphasized over others? 
 
If change in one attribute leads to a change in consequences, a dopamine error signal 
enhances the weight of that attribute.   
 
That enhanced weight is carried to DLPFC, which enhances acetylcholine attentional 
signals to that attribute – both via septum to hippocampus and via nucleus basalis to cortex. 
 
“Gist” is the original input with the attributes thus attentionally weighted. 
(Related models: ARTMAP (Carpenter, Grossberg, & Reynolds, 1991), the supervised 
version of ART, includes a map field that encodes associations, which could be identified 
with part of the hippocampus.  O’Reilly, Bhattacharyya, Howard, & Ketz (2014) lists roles 
in episodic-to-semantic memory transition for regions of hippocampus – entorhinal, dentate 
gyrus, CA3, CA1.) 
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