A Quantitative Model of the Perception of Randomness in Structured Two Dimensional Space

 Authors: Ada Hurst \& Frank Safayeni

 Authors: Ada Hurst \& Frank Safayeni}

ABSTRACT

The literature on the perception and generation of randomness suggests that people deviate from true randomness in consistent ways. Representativeness, ease of encoding, and variety-seeking theories only provide partial explanations. In the context of 2D sets of cells in grid-like formations, we propose that people judge cells with higher perceived 'coverage' as being more random. Given a selected cell, we define its coverage as a perceptually-formed grouping of cells to which people assign similar probabilities: a cell 'covers' similar or nearby cells. We design a quantitative model for calculating coverage and demonstrate its ability to predict judgments of randomness in two experiments.

1. B ACKGROUND

FГन ㄷㄷ닫ㄷ randomly selecting three squares out of 81
 - ГГГ

Q: Can existing theories explain the observation?

1: Local representativeness ${ }^{1}$
Selections are (locally) representative of randomness
But, why is spreading and avoidance of edges representative of chance?
2: Over-alternations ${ }^{2}$
Random selections have high
probability of alternations $\mathrm{P}(\mathrm{A})$
But, selections could have high
$\mathrm{P}(\mathrm{A})$ and not be perceived random
3: Ease of encoding ${ }^{2}$
Locations that are easier to encode are perceived as less random

But, selections could be difficult to encode, yet not be spread out

 ㄷㄷㄷㄷㄷㄷㄷ

 ㄷㄷㄷㄷㄷㄷ ㄷㅍㄷㄷாㄷ

2. PROPOSED THEORY

People perceive locations with highest coverage as being the most random.

Coverage by proximity ($\mathbf{C P}$) of cell X refers to surrounding cells that people group with X.

3. METHODOLOGY

Test the coverage maximization model in simple 6-cell structures

Experiment 1A - Single selection
Step 1: Define single-selection CP in 6-cell 2D structures
Step 2: Select a number of 6-cell 2D structures to be chosen in the experiment
Step 3: Choose possible selection locations, calculate CP , and rank accordingly

Step 4: Ask participants to rank same based on perceived randomness

Result: There is an observed agreement ($\mathbf{p}<\mathbf{0 . 0 1}$) among participant rankings and expected rankings*.

3. DISCUSSION

Coverage predicts perceived randomness of cells better than existing theories
1.CP makes a (correct) prediction
where $\mathrm{P}(\mathrm{A})$ makes no prediction Most
random

2. CP makes a (correct) prediction where ease of encoding makes incorrect prediction

REFERENCES

. Kahneman, D., \& Tversky, A. (1972). Subjective probability: A judgement of representativeness. Cognitive Psychology, 3, 430-454 doi: 10.1007/978-94-010-22880_3
Falk, R., \& Konold, C. (1997). Making sense of Randomness Implicit encoding as a basis for judgment. Psychological Review 104(2), 301-318. doi:
10.1037/0033-295X.104.2.301

