

ABSTRACT

The literature on the perception and generation of randomness suggests that people deviate from true randomness in consistent ways. Representativeness, ease of encoding, and variety-seeking theories only provide partial explanations. In the context of 2D sets of cells in grid-like formations, we propose that people judge cells with higher perceived 'coverage' as being more random. Given a selected cell, we define its coverage as a perceptually-formed grouping of cells to which people assign similar probabilities: a cell 'covers' similar or nearby cells. We design a quantitative model for calculating coverage and demonstrate its ability to predict judgments of randomness in two experiments.

BACKGROUND

		\checkmark		
\checkmark				
			\checkmark	

Consider prior observation of people randomly selecting three squares out of 81

Compared to random selections, people's selections are spread out, while avoiding the edges of the grid

Q: Can existing theories explain the observation?

1: Local representativeness¹

Selections are (locally) representative of randomness

But, why is spreading and avoidance of edges representative of chance?

2: Over-alternations²

Random selections have high probability of alternations P(A)

But, selections could have high P(A) and not be perceived random

3: Ease of encoding²

Locations that are easier to encode are perceived as less random

But, selections could be difficult to encode, yet not be spread out

in Structured Two Dimensional Space

Authors: Ada Hurst & Frank Safayeni

PROPOSED THEORY

Step 1: Define calculation of distance

Step 2:

METHODOLOGY

Test the coverage maximization model in simple 6-cell structures

Experiment 1A – Single selection

Step 2: Select a number of 6-cell 2D structures to be chosen in the experiment Step 3: Choose possible selection locations,

calculate CP, and rank accordingly

Step 4: Ask participants to rank same based on perceived randomness

<u>Result</u>: There is an observed agreement (p<0.01) among participant rankings and expected rankings*.

3. DISCUSSIO

Coverage predicts perceive

1.CP makes a (correct) predic where P(A) makes no predic

Compare observed frequency of distances to their expected frequency (if selections were truly random and independent)

ΟΝ			
eived rando	omness of cells	better than ex	kisting th
ediction rediction Least	2. CP makes ease of enco Most	a (correct) pred ding makes inco	iction whe rrect pred Least
random CP = 0.5	random \leftarrow $CP = 1.5$	e CP = 1	random $CP = 0$
P(A) = 1/5	Easy to encode	Harder to encode	Easy to en

