

Testing Models of Deferred

Decision Making

Jared M. Hotaling, Jörg Rieskamp, Sebastian Gluth DEPARTMENT OF PSYCHOLOGY, UNIVERSITY OF BASEL

Introduction

How do people know when to defer a decision and collect more information, or when to stop sampling and make a final choice? This is a problem faced by physicians diagnosing an illness, consumers researching a purchase, and commanders taking military action. We conducted a study in which participants purchased up to twenty independent observations about two mutually exclusive medical conditions before making a final diagnosis. Their goal was to make accurate choices, while minimizing sampling costs. We tested several models and found stron support for the Time-Variant Sequential Sampling Model⁵ over the Error Cost Stopping Rule⁴.

Medical Diagnosis Experiment

Error Cost Stopping Rule

- Calculate the expected error cost and terminate when the cost of the next sample exceeds the E(EC) for one diagnosis
- E(EC Choose A) = P(B|evidence)*(R-P)Ο
- Test Cost = subjective waiting cost + objective price
- o Quantitative predictions calculated from stochastic version
- P(terminate) = logistic [sample cost min(E(EC))]
- Final choice = logistic function of log-odds ratio
- Free Parameters (3) Ο
 - Termination Sensitivity
- Choice Sensitivity
- Impatience Rate

Time-Variant Sequential Sampling Model

3-alternative accumulator model w/ collapsing thresholds alternatives explicitly represented

Previous Research

- Several studies challenge the constant threshold assumption, instead showing that less evidence is needed over time
- Sanders & Ter Linden (1967)¹ and Viviana (1979)² found that the likelihood of terminating after a sequence of strong evidence was greater when preceded by non-diagnostic sequence
- o Pitz, Reinhold, & Geller (1969)³ found that late in a sequence of tests participants often terminated when the number of positive and negative tests was equal
- o Busemeyer & Rapport (1988)⁴
- > Terminating after non-diagnostic subsequence
- > Terminate contrary to final sample

				o s-alternative at					
ŋg	Diagnose with Orthorlia	Buy another test	Diagnose with Banasica	o All three choice					
				o Evidence accum					
-		\$0.03							
				Drift rates a					
		Threshold c							
	Vour Total:			Sample Alterr					
	\$9.97	17 Tests Remaining	Patient 1	Drift rate in					
				o Decision made					
	Results	Results							
	 Purchased 5 17 	• Free Parameters • θ_{AB} , θ_{sample} ,							
	 No difference 								
	 Terminated wit 								
	(StdErr = .09)	 Model Comp Fit to each individual Control for mode 							
	 Mean Accuracy 								
	5								

o Terminated with equal evidence for each diagnosis for

- nulates continuously at constant rates
- & B
 - are function of Expected Value (plus noise)
 - decreases over samples at constant rate
- native
- nversely proportional to sample cost
- when one accumulator exceeds its threshold
- < 0, choose disease favored by evidence rs (4)
 - A/B collapse rate, std(noise)

parison Method

- vidual using maximum likelihood
- del complexity using BIC
- Create stochastic version of rule-based models to allow

Strong Recency Effect

Research Questions

- How much testing will people pay for before making a diagnosis?
- Cognitive Models best describe the deferred decision making process?

Cover Story

- o Disease outbreak in a large city; flu-like symptoms
- o Each patient is infected with one of two viruses
- o Blood tests can be used to identify with virus is present
- Test error occur 40% of the time!
- o Maximum of 20 tests per patient

Experimental Method & Design

4.84% of patients

 \checkmark

0

o Chose the unfavored diagnosis for 5.03% of patients

quantitative comparison

	Г	Ι	I	Ι	1
25					
ts 					
cipan 05					
EL Pari					
er of					
qun 10					
Z 5	_				
Ω					

- o 43 participants each diagnosed 72 patients
- o Payoffs
- Initial endowment of \$10
- + \$0.65 for correct diagnosis
- \$1 for incorrect diagnosis
- Test Cost Conditions
- Constant: \$0.05/test

Increasing: \$0.01, \$0.02, \$0.03... References

- ¹ Sanders, A. F., & Ter Linden, W. (1967). Decision making during paced arrival of probabilistic information. Acta Psychologica, 21, 170-177.
- ² Viviani, P. (1979). Choice reaction times for temporal numerosity. *Journal of Experimental Psychology:* Human Perception and Performance, 5, 157-167.
- ³ Pitz, G. F., Reinhold, H., & Geller, E. S. (1969). Strategies of information seeking in deferred decision making. Organizational Behavior and Human Performance, 4(1), 1-19.
- ⁴ Busemeyer, J. R., & Rapoport, A. (1988). Psychological models of deferred decision making. *Journal of* Mathematical Psychology, 32(2), 91-134.
- ⁵ Gluth, S., Rieskamp, J., & Büchel, C. (2013). Deciding not to decide: Computational and neural evidence for hidden behavior in sequential choice. PLoS computational biology, 9(10).

o Uses each individual's frequency distribution to calculate P(terminate | test #)

Constant Threshold Model

- Threshold (# of tests) is a free parameter
- o P(error) is a free parameter

TV-SSM BL1 BL2 Const ECSR

Conclusions

- o More evidence against constant threshold
- o Large individual differences
- Most individuals best fit by TV-SSM
 - Begin independently accumulating evidence in favor of each alternative
- Quickly transition to simple choice rule Some individuals best fit by ECSR
 - Pessimistically focus on error avoidance, rather than maximization
 - Quickly terminate when impatience become large