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Abstract

Though Bayesian methods are being used more frequently, many still struggle with the best method for setting priors with novel measures or task
environments. We propose a method for setting priors by eliciting continuous probability distributions from naive participants. This allows us to
include any relevant information participants have for a given effect. Even when prior means are near-zero, this method provides a principle way to
estimate dispersion and produce shrinkage, reducing the occurrence of overestimated effect sizes. We demonstrate this method with a number of
published studies and compare the effect of different prior elicitation methods.

Methods

I Experimenters selected studies that tested the substantive theory by comparing two group means.
I 48 undergraduates gave estimates of the outcome for each group on the scale of the measured variable.
I Aggregated responses to produce priors for the studies.

Elicitation

I Elicit lowest and highest possible estimates for each control and experimental condition (added language for experimental condition in parentheses)

1 How far away would the average person (who had just eaten pretzels) estimate a bottle of water that is truly three feet
away?

2 On a range of 0 to 20, how depressed is the average person (after viewing pictures of a luxury good)?
3 Out of 10 attempts, how many putts at a distance of 3 feet would the average person sink (after hearing that they are using

a lucky ball)?
4 One a scale of 0 to 200 cents, how much would an average person say 100 units of a randomly selected foreign currency

is worth (while holding a heavy clipboard)?

I Calculate cutpoints based on interval widths H, L
c1 = L + H−L

6 , c2 = H−L
2 , c3 = H − H−L

6
I Elicit probability that observed effect is lower than c1, c2, and c3.

Aggregation

Median aggregation Estimate each participant’s location and scale parameters independently for
each experimental condition. The estimated prior values are the median of the subject location
and scale parameter values.

Full Pooling Bayesian Implements graphical model to the immediate right to independently estimate
control and experimental parameters. This method ignores individual differences, only
produces group prior estimates.

Partial Pooling Bayesian Implements graphical model to the far right to independently estimate control
and experimental parameters while varying all parameters by participant (and shrinking those
estimates toward the group means using a normal hyperprior).

Effect Size Uniform Prior Max. Lik. No Pool Part Pool
Study

1 -0.30 0.17 0.19 0.18
2 0.40 0.16 0.21 0.18
3 0.65 0.09 0.10 0.09
4 0.13 0.00 0.06 0.05

Observed t
1 2.00 2.79 2.79 2.79
2 2.00 2.73 2.74 2.73
3 2.14 3.21 3.21 3.20
4 8.00 0.96 0.97 0.97

Full Pooling Bayesian

µ ∼ N(0, 1e4)

σ ∼ χ−2(2)

y = Φ(q−µσ )

α = σy

β = σ(1− y)

φ ∼ U(0, 1)
ρ ∼ U(0, 1)

p ∼




φρ if y = 1
φ(1− ρ) if y = 0
(1− φ)Beta(α, β) if 0 < y < 1
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Partial Pooling Bayesian

i = 1, . . . , N

µj ∼ N(0, 1e4)

σj ∼ χ−2(2)

τ ∼ U(0,∞)

γ ∼ U(0,∞)

mij ∼ N(µj, τ)

sij ∼ N(σj, γ)

yij = Φ(q−mij

sij
)

αij = sijyij

βij = sij(1− yij)

φ ∼ U(0, 1)
ρ ∼ U(0, 1)

pij ∼




φρ if y = 1
φ(1− ρ) if y = 0
(1− φ)Beta(αij, βij) if 0 < y < 1
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Results
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Cumulative distributions for participants (gray) and aggregated for each condition (red & blue) for each of four studies (horizontal facets) and aggregation methods (vertical facets).

Conclusions
I Prior effect sizes were uniformly smaller in magnitude than those

estimated by published studies.
I Different aggregation methods produced similar prior effect size

estimates.
I Partially pooled Bayesian estimates are less extreme relative to

unpooled ML estimates, making them potentially more useful when
individual estimates are of interest (though at a substantial
computational cost).

I This relatively inexpensive method of estimating priors allows us to
make more efficient use of the consistently underwhelming sample
sizes in Psychology.
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