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Abstract

Subjects performed a decision task (Grether, 1980) in both a well-rested and experimentally sleep-deprived state. We
found two main results: 1) final choice accuracy was unaffected by sleep deprivation, and yet 2) the estimated deci-
sion model differed significantly following sleep-deprivation. Following sleep deprivation, subjects placed significantly
less weight on new information in forming their beliefs. Because the altered decision process still maintains decision
accuracy, it may suggest that increased accident and error rates attributed to reduced sleep in modern society stem
from reduced auxiliary function performance (e.g., slowed reaction time, reduced motor skills) or other components of
decision making, rather than the inability to integrate multiple pieces of information.
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1 Introduction
A large volume of evidence suggests that individuals in
industrialized nations are becoming increasingly sleep-
deprived. According to a recent poll conducted by the
National Sleep Foundation, the average American adult
slept less than 7 hours per night in 2005. The nightly
average was 7.5 hours in 1975 and 9 hours per night in
1910 (Coren, 1996). This trend has significant implica-
tions given the known effects of sleep deprivation: de-
creased motor and cognitive performance, reduced vig-
ilance and reaction time, worsened mood, and reduced
ability to think flexibly (Pilcher & Huffcutt, 1996; Har-
rison & Horne, 1999, 2000). Indeed, even 7 hours of
habitual sleep per night leads to significantly diminished
cognitive performance relative to 8 or 9 hours (Van Don-
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gen, et al, 2003; Belenky, et al., 2003), which causes us
to wonder about the more hidden decision effects of sleep
loss. Nearly 50 million Americans, close to 25% of all
adults, are estimated to suffer from some level of sleep
deprivation,1 and so the effects of sleep deprivation on
decision-making have widespread implications.

Many occupations promote a culture of sleep depri-
vation (e.g., emergency personnel, air traffic controllers,
medical residents, military personnel, long-haul truck
drivers, shift workers). Sleep deprivation costs the U.S.
economy $40 billion dollars annually in lost productivity
(Stoller, 1997). Additionally, it results in increased work-
place accident rates (Melamed & Oksenberg, 2002; Ak-
erstedt et al, 2002), increased absenteeism (Phillips et al.,
1991; Kupperman et al., 1995), greater medical morbidity
and related costs (Drake et al., 2004), and even slower ca-
reer advancement (Johnson & Spinweber, 1983). Across
numerous settings (work, home, driving, public acci-
dents) Leger (1994) estimated the costs of accidents at-
tributable to sleepiness at $43-$56 billion, in 1988 dol-
lars. Sleep deprivation has also been implicated in sev-
eral major historical disasters, including the Space Shut-
tle Challenger explosion, the Exxon Valdez oil spill, and
the Chernobyl Nuclear plant explosion (Coren, 1996). In
sum, the impact of sleep deprivation in the workplace
and on society as a whole, while difficult to measure pre-
cisely, is massive.

1See data reported by the National Sleep Foundation, accessible at
www.sleepfoundation.org.
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This paper reports results from a laboratory study that
examines the effects of sleep deprivation on informa-
tion processing. Examinations of flexible thinking, strat-
egy updating, and risk assessment are relatively new to
sleep research (see references in Harrison & Horne, 2000;
McKenna et al, 2007, Killgore et al, 2006). Past re-
search has utilized complex multi-modal tasks or oper-
ational settings that cannot identify specific aspects of
decision-making affected by sleep deprivation. For exam-
ple, Harrison and Horne (1999) utilize a marketing sim-
ulation game, and they report that 36 hours of total sleep
deprivation led to stereotyped decisions failing to inte-
grate previous feedback, resulting in large financial losses
and production errors. In operational settings, similarly
global outcome measures are reported (e.g., Friedl et al.,
2004; Weinger and Ancoli-Israel, 2002). A recent meta-
analysis of 60 studies found that “clinical outcomes”, the
culmination of many decisions, were negatively impacted
by physician sleep loss (Philibert, 2005).

Thus, neither laboratory nor applied sleep deprivation
studies have measured discrete, quantifiable decision pa-
rameters free of confounds. Even the well-known Iowa
Gambling Task (IGT), which has been used to examine
risky choice behavior in the sleep literature (Killgore et
al., 2006), does not allow the researcher to separate risk
attitude from subjective probability formation — the lat-
ter results from the fact that there is missing informa-
tion with respect to outcome probabilities in the IGT.
McKenna et al. (2007) addressed this issue and showed
that sleep deprivation desensitizes the decision-maker to
risk.

In general, the mechanism by which sleep depriva-
tion alters decision making remains unclear. Given that
many real-world decisions involve multiple cognitive
processes, it is important to separately examine several of
those components in an effort to determine which may be
specifically impacted by sleep deprivation and which may
not. The studies examining risk preference cited above
are examples of such work. Another process found in
many decisions is the ability to integrate multiple pieces
of information into a decision. Sleep deprivation might
alter subject tendencies to utilize one or more pieces of
information in decision-making.2 Or, the arrival of new
information may elicit an impulsive response as subjects
react to new evidence, and this impulse may be altered
following sleep deprivation. The current study exam-
ines this specific aspect of decision-making through the
study of Bayesian updating. The experiment is adminis-
tered to subjects both well-rested and after 22–25 hours
(µ=22.72, σ=.60) of controlled total sleep deprivation.
For comparison to previous economics research, we repli-
cate the Bayes rule experiment of Grether (1980).

2For example, psychological framing effects are shown to decrease
in effortful thinking (McElroy and Seta, 2003).

One can examine the effects of sleep deprivation on
the ability to integrate information into a decision from
at least two perspectives, each with their own strengths
and weaknesses. One involves asking whether individu-
als can calculate the true Bayesian probability given base
rate probabilities and new sample evidence. This requires
asking subjects for their judgment of the actual probabil-
ity of event A occurring and, therefore, focuses on finding
the “ideal” answer to a problem. Although this approach
has merit, our interest was in determining the weight
placed on the odds and evidence when an actual forced
choice was made (i.e., A was more likely to occur). Such
a scenario is more aligned with many naturally-occurring
decision environments in everyday life. For example, one
may have to decide which of two routes to a destination is
faster right now given the prior knowledge of the rate of
traffic on each route and the new information of the cur-
rent day and time. A surgeon may have to decide to per-
form an emergency procedure given prior knowledge of
the relative success of the procedure and the new informa-
tion of the current condition of the patient. In short, when
individuals make real decisions, they must often choose
a specific course of action (i.e., a dichotomous choice)
rather than a probability estimate. It is the influence of
sleep deprivation on making such decisions that is our in-
terest.

Because information updating is a fundamental com-
ponent of decision making under uncertainty, this re-
search is relevant to a wide variety of behavioral appli-
cations. Sleep research has indirectly pointed towards
failed information assimilation under sleep deprivation
(e.g., increased hesitance and reduced focus among sleep-
deprived junior doctors in Goldman et al, 1972, and in-
creased stereotyping of responses in Harrison & Horne
1997, 1998). However, more direct evidence is needed,
and Harrison and Horne (2000) recognize the lack of
sleep deprivation research on specific decision models.
As behavioral economics continues to explore decision-
making, one cannot ignore the evidence indicating that
many decision-makers are often sleep-deprived to some
degree. Sleep loss effects on decision-making would also
imply a potential confound in some experimental data
sets: students employed as shift workers, or students
during exam week, may include relatively more sleep-
deprived subjects than other populations.3

3A small amount economics research has examined sleep. Biddle
and Hammermesh (1990) incorporate labor productivity effects of sleep
in a theoretical model of time allocation. Their empirical results from
a variety of sources lead them to conclude that increased wages reduce
sleep (more so for men than women), while increasing waking leisure
time, as opposed to increasing hours of work. Their results are consis-
tent with the aggregate evidence on sleep reduction in many industrial-
ized countries with rising wages, and they imply that sleep deprivation
may be an inevitable byproduct of wage growth in a society. Kamstra
et al. (2000) examine daylight saving time changes on financial mar-



Judgment and Decision Making, Vol. 3, No. 2, February 2008 Sleep loss and Bayes’ rule 183

2 Methods

As noted, the experiments replicate the Grether (1980)
design for a hand-run Bayes rule decision task. Two
bingo cages are each filled with six colored balls: Cage A
is filled with four green and two red balls, and Cage B is
filled with three red and three green balls. Six draws, with
replacement, were made from one of the cages behind an
opaque divider. Each subject was informed of a “prior”
probability of using Cage A in terms of a die roll. For
example, a 1/3 prior odds of Cage A was implemented
by selecting Cage A if the die roll was 1–2 (3–6 implied
use of Cage B). Subjects did not see the actual die roll
but were shown each ball drawn, and after six draws they
were asked to indicate whether the balls came from Cage
A or B.

It is important to note that we do not vary the new ev-
idence sample size in our design, rather just the strength
of the evidence in favor of Cage A. Griffin and Tversky
(1992) show that, though both strength of evidence and
sample size contribute to the likelihood ratio for the event
in question, subjects place more weight on the sample
proportion in favor of a particular outcome. Our results,
therefore, do not speak to subject weighting on new evi-
dence in general, but rather new evidence as represented
by sample proportion in our design.4 It would, however,
be interesting to explore the weight of evidence through
sample size as another manipulation for future research.
Importantly, subjects in our design were not required to
memorize the sample drawn, which would confound our
task with short-term memory skills. A correct (incorrect)
cage response resulted in payment of $12 ($2).

Each round or trial — choose the cage, draw the sam-
ple, indicate which cage was used — was repeated six
times, with one well-rested and one sleep-deprivation
trial randomly selected for payment after the final Bayes
rule experiment — subjects did not know their accuracy
or winnings until after all decisions were made. The de-
sign was balanced across prior A odds of 1/3, 1/2, and
2/3, which occurred in a random order chosen for each
subject.5 Because an accurate cage choice pays more, it
is incentive compatible to indicate Cage A if one’s sub-
jective (posterior) probability of Cage A is greater than
50%. A Bayesian subject will equally consider both the
prior odds and sample evidence in making choices.

ket returns, and they show that returns drop both after losing an hour
(Spring) and gaining an hour (Fall). This suggests that minor disrup-
tions of one’s internal (biological) circadian rhythm can affect behavior
and decisions, independent of sleep loss.

4The authors thank an anonymous reviewer for highlighting this
point.

5One implementation inadvertently utilized one instance each of the
prior odds of 1/6 and 5/6.

2.1 Subjects
A total of 24 subjects, were administered the Bayes rules
experiment as part of their participation in a total sleep
deprivation study, which involved a stay of several con-
secutive nights and days in the Laboratory for Sleep
and Chronobiology at the University of California-San
Diego.6 These 24 subjects ranged in age from 18 and
39 years of age (µ=23.83, σ=5.37), Subjects were com-
pensated a flat fee for participation in the sleep study, but
it was made clear that these experiments afforded the op-
portunity to earn extra cash payoffs based on the experi-
ment outcomes. Testing on various cognitive dimensions
occurred approximately every two hours during their lab
stay. Each subject completed the basic 30-minute (6-trial)
Bayes rule experiment twice; once in a well-rested state,
and once after 22–24 hours of total sleep deprivation.
Both administrations of the task occurred during morn-
ing hours for all subjects, so that there is no confound
between sleep loss and natural circadian sleep-wake cy-
cles. The total number of observations is N=288 (N=144
well-rested and N=144 following sleep deprivation).

Screening criteria allowed right-handed, healthy, and
“normal” sleeper subjects — those with consistent sleep-
-wake schedules to include 7–9 hours in bed each night.
Subjects are indirectly monitored for one week prior to
reporting to the sleep lab by keeping a sleep journal and
wearing an actigraph.7 During this week, subjects are
required to keep normal sleep-wake routines and refrain
from use of stimulants for 72 hours prior to reporting to
the lab. In short, all subjects (including Control subjects,
discussed later in this section) enter the lab in a similar
well-rested state. During the total sleep deprivation treat-
ment, subjects were not allowed any sleep, not allowed
stimulants of any sort, and they were under constant su-
pervision by lab staff to ensure this. Figure 1 describes
the basic timeline of the subjects’ lab stay relative to their
participation in these decision experiments.

2.2 Experimental design issues
In a more recent paper, Grether (1992) notes that there
are limitations to his simpler 1980 design. The dichoto-

6Though the sample size is small, multiple subject trials create a
panel of N=144 well-rested and N=144 sleep-deprived observations. A
small number of total subjects is quite common in sleep-deprivation
studies, because of the screening criteria, the requirement that subjects
stay in the sleep lab several days, and the total compensation per subject
for a total sleep-deprivation experiment (often several hundred dollars
per subject).

7The actigraph measures wrist movement as a proxy of gross mo-
tor activity. This movement, in turn, is used to determine sleep and
wake. These data verify that subjects are engaged in normal sleep pat-
terns prior to their lab stay and are not partially sleep deprived at the
beginning of the experiment. The complete list of experimental inclu-
sion/exclusion criteria is fairly standard for sleep deprivation research,
and they are available on request.
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Figure 1: A week in the sleep lab: time line. (Some subjects stayed in the lab one less day and participated in a
one-night sleep-deprivation study. Our examination of sleep-loss effects after one night of sleep deprivation allowed
us to combine subjects from different sleep studies, whether they participated in a one-night or two-night study.)

mous choice of Cage A or B does not allow us to in-
fer strength of belief (i.e., 55% versus 95% certain that
the balls came from Cage A), though this is possible us-
ing a rather complicated incentive compatible probability
elicitation procedure (see Grether, 1992). As noted ear-
lier, the dichotomous choice environment more closely
mirrors naturally-occurring decision environments. Ad-
ditionally, the more simple dichotomous choice design is
easier to understand, which is important given that sub-
jects complete one of the trials following sleep depriva-
tion. On the other hand, the dichotomous choice environ-
ment implies that simple decision heuristics may be avail-
able, which could possibly confound an examination of
Bayesian updating. We present data and analysis, how-
ever, that strongly support the conclusion that subjects
weight both prior odds and new evidence in making their
decisions.

Because of the existing sleep protocol, subjects al-
ways performed the task first well-rested and then follow-
ing sleep deprivation. Given the potential learning con-
found in our main data, we also recruited an additional
12 control subjects (mean age µ=24.12, σ=4.28) who
performed the Bayes rule task twice (N=144 total obser-
vations), at approximately 22–24 hours apart on consecu-
tive mornings, but they were well-rested both times. De-
cision model estimates for the control subjects show no
significant differences across the two administrations of
the task — contrary to the main finding in the sleep depri-
vation data. In other words, we find no evidence that the
differences in decision-making we report in the next sec-
tion are due to subject learning. Additionally, if subjects
learned, choice accuracy would be higher in the second
Bayes rule experiment, but it is not. Or, learning might
imply that a particular empirical model should better fit
the data as choices converge to a particular set of model
parameters — Grether (1980) finds this for experienced
subjects, for example. Our results also show that this is

not the case. We are therefore confident in attributing the
second-trial effects to sleep deprivation.

3 Results

Table 1 shows the aggregate data in terms of the propor-
tion of overall subject choices of Cage A relative to the
total observations for a particular combination of prior
odds, PA, and evidence. For comparison, the Bayesian
posterior probabilities — those calculated by Bayes rule
— are included in parenthesis in each instance. At this
point, the aggregate data offer the best estimate of overall
“strength of belief” for our pooled data, given that each
individual subject makes a simple dichotomous choice.
A quick scan of Table 1 clearly highlights that, holding
PA constant, the proportion of subject choices of Cage
A increases as the evidence favors Cage A (i.e., as more
green balls are drawn in the sample evidence). It is also
the case that, holding the evidence constant, the propor-
tion of choices of Cage A rises with PA. Both of these ob-
servations are true for the well-rested and sleep-deprived
subsamples. In short, the evidence is supportive of the
hypothesis that subjects care about both prior odds and
evidence in forming belief. We next turn to our decision
model estimates to examine relative weights placed on
each source of information.

The decision model estimates we report account for the
potential non-independence of decisions of a given sub-
ject across trials as a subject-specific random effect, but
our results are robust to error-term specification. Here,
as in Grether (1980), we estimate the following decision
model:

Y ∗
it = α+β1lnLR(A)t+β2ln

(
PA

1− PA

)

t

+µi+εit (1)
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Table 1: Proportion of Cage A choices as a fraction of total observations (Bayesian probabilities in parenthesis)

Evidence Well-rested Total Sleep Deprivation

Green Red PA = .33 PA = .50 PA = .67 PA = .33 PA = .50 PA = .67

0 6 -- (.04) -- (.08) -- (.15) -- (.04) -- (.08) -- (.15)

1 5 0/6 (.08) 0/3 (.15) -- (.26) 1/6 (.08) 1/5 (.15) 0/3 (.26)

2 4 0/7 (.15) 0/9 (.26) 1/2 (.41) 1/5 (.15) 0/7 (.26) 4/9 (.41)

3 3 0/13 (.26) 3/15 (.41) 9/13 (.58) 2/15 (.26) 1/15(.41) 6/11 (.58)

4 2 9/17 (.41) 10/13 (.58) 20/21 (.73) 3/14 (.41) 8/9 (.58) 12/14 (.73)

5 1 3/3 (.58) 7/7 (.73) 8/8 (.85) 3/4 (.58) 8/9 (.73) 8/8 (.85)

6 0 -- (.74) 1/1 (.85) 5/5 (.92) 2/2 (.74) 5/6 (.85) 2/2 (.92)

Cage A=4 Green, 2 Red Balls; Cage B=3 Green, 3 Red Balls.

where Y ∗
it is the subject i’s subjective log odds in favor

of Cage A in trial t, LR(A)t is the likelihood ratio (evi-
dence) for Cage A, and

(
PA

1−PA

)
is the prior odds ratio for

Cage A. The dichotomous variable Yit is observed equal
to 1 if Y ∗

it ≥ 0, and so we estimate (1) using a random
effects probit technique. Grether (1980) estimates logit
results for this model, without accounting for subject-
specific random effects, and so our econometric speci-
fications are similar but not identical. The Bayes rule hy-
pothesis is that α = 0, and β1 = β2 > 0, while over-
weighting the evidence implies β1 > β2 ≥ 0. Grether
(1980) found that, for most groups, subjects overweight
the evidence relative to the prior odds.

To evaluate the effects of sleep deprivation (SD), we
estimate the decision model with a dummy variable
SD=0,1 and interaction terms allowing for SD-specific
effects on either prior odds and/or new evidence weight-
ing. Specifically, we estimate:

Y ∗
it = α + β1lnLR(A)t + β2ln

(
PA

1− PA

)

t

+β3 · SDit + β4(lnLR(A)t · SDit)

+β5

(
ln

(
PA

1− PA

)
· SDit

)
+ µi + εit (2)

And finally, to evaluate the potential learning con-
found, we estimate a model similar to (2) for the control
data, except with a dummy variable and interaction terms
to account for the second administration of the task. That
is, the control subject model estimated is:

Y ∗
it = α + β1lnLR(A)t + β2ln

(
PA

1− PA

)

t

+β3 · 2ndAdminit + β4(lnLR(A)t · 2ndAdmit)

+β5

(
ln

(
PA

1− PA

)
· 2ndAdminit

)
+ µi + εit (3)

The estimation results of models (1), (2), and (3), are
shown in Table 2, and the models are all reasonably accu-
rate at predicting subject choices. The consistency across
models is that both prior odds and new evidence are sig-
nificant predictors of Cage A choice. Model (1) is most
similar to the Grether (1980) estimations8, though the
tendency in the pooled data (i.e., both well-rested and
sleep-deprived sessions) to overweight the evidence is not
statistically significant.9 Model (2) offers just one way to
estimate the effects of sleep deprivation on the decision
weight placed on prior odds versus new evidence, but our

8Grether (1980) finds that financially rewarded subjects typically
overweight new evidence, which he attributes to use of a “representa-
tiveness” heuristic. However, in his more general (1992) design, when
the heuristic is not as available, this overweighting of new evidence is
not borne out as a more general result.

9For comparison to Grether’s (1980) logit estimations, we also per-
form a logit estimation of the model similar to (1) above, but without the
random effects error-term specification. The pooled results that Grether
reports for his financially motivated subjects yield the estimated model
Yit = −.11+2.25·lnLR(A)it+1.82·PA/(1−PA)it, where α, β1,
and β2 are statistically significant. In estimating the same logit model
for our pooled data, the results are Yit = .04 + 2.26 · lnLR(A)it +
1.95 · PA/(1 − PA)it, with β1 and β2 being statistically signifi-
cant (p=.00). So, our results are quite comparable to those reported
in Grether (1980), and logit estimations of any of the models in this
section are consistent with the results we find in the probit estimations
that we report. The results we find are also similar for a fixed effects
specification (logit and/or fixed effects estimation results available from
the authors on request).
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Table 2: Probit estimates of Y ∗
it models (1), (2), and (3) (random effects specification. p-values given in parenthesis).

Model (1)
Main data
(N=288)

Model (2)
Main data
(N=288)

Model (3)
Control subjects
(N=144)

Coefficient estimated Coeff. marg.
effect Coeff. marg.

Effect Coeff. Marg.
Effect

Constant 0.03
(.83)

0.01
(.83)

0.14
(.61)

0.051
(.61)

–0.01
(.97)

–0.004
(.96)

β1

(evidence)
1.27
(.00)***

0.48
(.00)***

2.41
(.00)***

0.90
(.00)***

1.40
(.00)***

0.55
(.00)***

β2

(prior odds)
1.10
(.00)***

0.42
(.00)***

1.53
(.00)***

0.57
(.00)***

1.51
(.00)***

0.60
(.00)***

β3

(SD/2nd day) -- -- –0.21
(.48)

–0.08
(.48)

–0.77
(.30)

–0.30
(.30)

β4

(SD/2nd day*evidence) -- -- –1.43
(.00)***

–0.53
(.00)***

0.69
(.22)

0.27
(.22)

β5

(SD/2nd day*prior odds) -- -- –0.59
(.24)

–0.22
(.24)

0.03
(.96)

0.01
(.97)

% correctly predicted
by model

84.38% 84.38% 85.42%

results are robust to different estimation approaches.
The estimation of model (2) highlights the key result

that, following sleep loss, the decision weight placed on
the new evidence is significantly reduced (see cells in
boldface). The results from Model (3) do not show a sim-
ilar effect of the second-day session in the control sub-
jects, thus indicating that our key result is not caused
by learning or ordering of the tasks. We arrive at the
same basic conclusion if we directly test this by pooling
all data (i.e., experimental and control data) and includ-
ing dummy variables and interactions terms to examine
whether our key main finding is robust. To do this, we
create a dummy variable for Control subjects and for the
Session (=1 for second session). Note that Session=1 and
Control=0 implies a sleep-deprived subject, and estimate
the following model:

Y ∗
it = α + β1lnLR(A)t + β2ln

(
PA

1− PA

)

t

+ β3Session + β4Control + β5(lnLR(A)t · Session)
+ β6(lnLR(A)t · Control) + β7(Session · Control)
+ β8(lnLR(A)t · Session · Control) + µi + εit (4)

As can be seen in Table 3 results, both the evidence
and the prior odds matter in the expected way, with sub-
jects overweighting the evidence (p=.01 for the χ2 test

of β1 = β2) in making their Cage A choice. Control
subjects weight the evidence less than the main experi-
ment subjects (β6 < 0). Most importantly, the interaction
between lnLR(A)*Session*Control) indicates that control
subject increase the weight they place on the evidence in
the second session (β8 > 0). Because the general ten-
dency is to reduce weight on the evidence in the second
session (β5 < 0), this indicates a fundamental difference
in the second session effect for Control subjects versus
main experiment subjects (for whom session two means
“sleep-deprived”). In fact, these results indicate there
may be a general trend to increase the weight placed on
evidence when one repeats the task a day later, but sleep
loss reverses that tendency. This supports our claim that
the reduction in estimated decision weight on new evi-
dence following sleep deprivation in Table 2 is not driven
by the ordering of our treatments.

Our second result is quite intriguing. Though the
estimated decision model significantly differs following
sleep loss, choice accuracy is maintained. Whether well-
rested or sleep-deprived, subjects indicated the correct
cage 67–68% of the time.10 To the extent that rele-

10Choices and accuracy are not consistent with random decisions. In
the well-rested subsample, the actual Cage A frequency is 54.2%, and
subjects chose Cage A 52.8% of the time (actual accuracy was 68.1%).



Judgment and Decision Making, Vol. 3, No. 2, February 2008 Sleep loss and Bayes’ rule 187

Table 3: Summary results from pooled data (experimental and Control).

Parameter α β1 β2 β3 β4 β5 β6 β7 β8

Marginal effect 0.05 0.84 0.48 –0.07 –0.05 –0.46 –0.34 –0.07 0.73
p-value (two-tailed test) 0.61 0.00 0.00 0.51 0.78 0.01 0.04 0.64 0.02

vant new information is valuable, our Model (2) results
in Table 2 indicate that accuracy might be expected to
drop, in general, following sleep deprivation because the
decision-weight on new evidence falls. However, well-
rested subjects were overweighting the new evidence
relative to efficient Bayesian updating (i.e., β1 > β2

in Model 2, p=.03). Thus, the altered decision pro-
cess following sleep deprivation reduces (non-Bayesian)
hyper-focus on new information — this should, ceteris
paribus, increase choice accuracy. That choice accuracy
is not altered following total sleep deprivation may result
from our simple dichotomous choice environment, and is
therefore not a general result. A more sensitive outcome
measure, such as probability estimates, may highlight in-
teresting effects masked in our design. Nevertheless, our
design recreates a dichotomous choice environment that
is similar to many real-world environments where choice
is among two courses of action.

Actual choice accuracy may be biased if the more
likely Cage, based on Bayesian updated probabilities, is
often not the actual Cage (just by random chance). How-
ever, further examination of subject choices indicate that
they coincide with the more likely Bayesian event 85%
and 84% of the time when subjects are well-rested and
sleep-deprived, respectively.11 We also note that our sec-
ond result (i.e., maintained choice accuracy following
sleep loss) implies equal accuracy only in assessing the
likelihood of being in state A versus state B. In many
cases, an individual cannot choose the decision environ-
ment, and so it is important to note that our results do not
imply that all decisions, in general, are resilient to short-
term sleep loss.

4 Discussion

Our results are significant in today’s modern sleep-
deprived society. Existing research has not thoroughly
examined the effects of sleep deprivation on decision-

In the sleep-deprived subsample, Cage A frequency was 43.8%, and
Cage A choice occurred 46.5% of the time (67.4% accuracy).

11The same is true of control subjects, in that subject choices coincide
with the more likely Bayesian event 85% and 86% of the time for the
first and second administrations of the task, respectively. These results
further argue that learning is not the cause of our result, as the control
data results are similar to the main data results in every way except for
the effect of the second administration on decision weights.

making, and the present results on Bayesian updating
suggest certain components of decision-making are re-
silient to at least some level of sleep loss. That is, we
find no evidence that roughly 24 hours of total sleep de-
privation affects the quality of final choices in this bi-
nary choice environment, and these results do not appear
to mask important individual subject differences in the
data.12

Of course, decision accuracy in this environment may
deteriorate with longer bouts of sleep deprivation, but
more extended periods of sleep loss would have less ex-
ternal relevance. For example, Van Dongen et al., (2003)
show that some of the effects of 24 hours of sleep depri-
vation are replicated when subjects get 4–6 hours of sleep
per night for up to a week (i.e., partial but chronic sleep
deprivation), which may reflect more typical sleep loss.
Decision quality may also suffer under more complex
tasks, but caution must be exercised in any more complex
task design so as to not confound the pure task of prob-
ability updating with other decision-making dimensions
(e.g., short-term memory). Because total sleep depriva-
tion has been shown to impair functioning in other areas
(e.g., short-term memory, reaction time, motor function),
our evidence suggests that the empirical data on increased
accidents/errors due to sleep loss are not necessarily at-
tributable to reduced abilities to integrate multiple pieces
of information into a decision. This argues for additional
research to more thoroughly examine this surprising find-
ing.

Our experiment involves an unavoidable risky decision
environment. Emerging evidence indicates that sleep de-
privation may lead individuals to select, on average, more
risky decision environments (McKenna et al., 2007).
Though we find error rates to be unaffected by sleep de-
privation (in our simple task), the cost of each error may
be higher in a riskier scenario. In our related research,
individuals seem desensitized to risk following approxi-
mately 24 hours of total sleep deprivation (McKenna et
al., 2007), with preferences converging towards risk neu-

12Choice accuracy is examined at the individual level, with roughly
equal numbers of subjects being slightly more or less accurate on day
one versus day two (for both main data and control data). Though the
data are limited, there are some occurrences of the exact same statistical
sample and prior odds for a subject both when well-rested and sleep-
deprived. Examining these data, subject choices are quite stable (of
the N=63 paired observations of this sort, in only 12 cases did subject
choice change after sleep deprivation).
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trality in both the payoff gains and loss domains. This
has interesting implications for, among others, military
personnel choosing to engage or not engage in a riskier
outcome scenario, or a physician choosing between two
courses of surgical action.

The finding of significant differences in estimated de-
cision models for well-rested versus sleep-deprived sub-
jects also merits further exploration. Our results are con-
sistent with recent research that has found that underly-
ing cognitive processes may be quite different follow-
ing sleep deprivation even though task performance is
unaffected (Drummond et al., 2000; Venkatraman et al.,
2007). As such, the change in estimated decision model
we find may be a first clue to the types of decision-related
cognitive processes altered following sleep loss. For ex-
ample, if the trend to decrease the weight placed on the
evidence continues with longer bouts of sleep depriva-
tion, this might suggest that individuals are eventually
unable to integrate multiple pieces of information into a
decision, instead relying on only a single variable and/or
a stereo-typed response.

One might hypothesize that subjects run up against the
constraints of bounded rationality following sleep depri-
vation, thus forcing a change in their methods of infer-
ence. For example, Gigerenzer and Goldstein (1996)
showed that simplistic models of inference need not do
worse than more complex algorithms. In may merely
be a coincidence in our data that the estimated decision
model following sleep deprivation appears Bayesian (i.e.,
equal weighting of prior odds and evidence). For exam-
ple, subjects appear to place less weight on both evidence
and prior odds following sleep deprivation, except that
the estimated effect on prior odds is smaller in magnitude
not statistically significant (p=.24, see Model (2) in Table
2). This may indicate that what appears Bayesian may
actually be an artifact of subjects weighting all sources
of information to (varied) lesser degrees following sleep
loss. While our studied was not designed to discriminate
between use of simple heuristics, it would be useful to
explore heuristics further in a distinct sleep study.

Decreased flexibility in responding to external stimuli
during sleep deprivation has been reported by other au-
thors (Harrison and Horne, 1998 and 1999). A possible
related explanation for our results might be that subjects
put less effort into calculating the actual probability of a
given outcome during sleep deprivation and instead rely
on approximating the answer (Drummond et al., 1999).
This could be similar to verbatim decisions and gist de-
cisions in Fuzzy Trace Theory (Reynanerd, 1991) and
would be consistent with the finding of less weight being
placed on both the prior odds and the sample evidence in
the decision model following sleep deprivation. Finally,
the effects of sleep deprivation reported here may result
more from an impairment in the ability to integrate infor-

mation during sleep loss, rather than specifically related
to decision making per se. While the process of integrat-
ing information has not been well studied during sleep
deprivation, several studies report deficits in the ability to
maintain and manipulate information in working memory
during sleep deprivation (Bartel et al., 2004; Chee et al.,
2006; Malemed and Oksenberg, 2002; Smith et al., 2002;
Turner et al., 2007), and this would be expected to impair
one’s ability to integrate multiple sources of information
during decisions.

Evidence from behavioral neuroscience studies indi-
cate that biological processes are altered following sleep
deprivation. For example, Drummond et al. (2000) stud-
ied behavioral and neural outcomes in free recall mem-
ory tasks. Though behavioral outcomes showed no sig-
nificant change, neural responses following sleep depri-
vation were significantly different. Such results are con-
sistent with a hypothesis of “compensatory recruitment”,
whereby distinct brain regions may be recruited to com-
pensate for the adverse condition of sleep loss. Others
have reported similar increases in brain activation and in-
tact performance during sleep deprivation on a variety of
tasks (Drummond et al, 2001, 2004, 2005; Portas et al,
1998; Chee & Choo, 2004), and Stricker et al (2006) have
reported changes in the neural networks that perform a
given task after sleep deprivation. Hsu et al., (2005) ex-
amined decision-making under uncertainty in a neuroe-
conomics experiment, and they suggest a multi-regional
neural system for evaluating uncertainty.

Though we examine only behavioral outcomes in this
paper, the evidence we find may be a clue indicating neu-
ral activation differences in information-updating envi-
ronments. For example, the ventrolateral prefrontal cor-
tex (VLPC) has been implicated in the neural process of
integrating new contingencies (Paulus, et al, 2004) while
the dorsolateral prefrontal cortex (DLPFC) plays a major
role in integrating multiple pieces of information (Cabeza
& Nyberg, 2000; Cohen et al, 1997). Thus, we might
hypothesize decreased activation of the VLPC and/or
DLPFC following sleep deprivation. Existing sleep re-
search suggests that compensatory activation may occur
in the parietal lobes following sleep loss, thus maintain-
ing performance (e.g., Drummond et al., 2000, 2001,
2005). While this is suggestive, further research is cer-
tainly necessary, because it highlights that our under-
standing of judgments and decision-making following
sleep deprivation is incomplete at best.
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