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Abstract

One of the core challenges of decision research is to identify individuals’ decision strategies without influencing
decision behavior by the method used. Bröder and Schiffer (2003) suggested a method to classify decision strategies
based on a maximum likelihood estimation, comparing the probability of individuals’ choices given the application of
a certain strategy and a constant error rate. Although this method was shown to be unbiased and practically useful, it
obviously does not allow differentiating between models that make the same predictions concerning choices but different
predictions for the underlying process, which is often the case when comparing complex to simple models or when
comparing intuitive and deliberate strategies. An extended method is suggested that additionally includes decision times
and confidence judgments in a simultaneous Multiple-Measure Maximum Likelihood estimation. In simulations, it is
shown that the method is unbiased and sensitive to differentiate between strategies if the effects on times and confidence
are sufficiently large.
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1 Methods for strategy classifica-
tion

In different situations, people might use different strate-
gies to decide. These strategies might sometimes be com-
pletely based on conscious processes, such as compar-
ing the available options on the most important attribute
and choosing the option that is better on this attribute
(e.g., Beach & Mitchell, 1978; Fishburn, 1974; Payne,
Bettman, & Johnson, 1988), or people might rely more
or less on automatic processes that integrate informa-
tion unconsciously (e.g., Busemeyer & Townsend, 1993;
Dougherty, Gettys, & Ogden, 1999; Glöckner & Betsch,
2008b). Decision researchers often are interested in the
question which strategy was (more likely) used by each
person. Several methods have been suggested to identify
decision strategies. The three predominant approaches
are structural modeling, process tracing, and compara-
tive model fitting (for overviews see Bröder & Schiffer,
2003a; Glöckner & Witteman, in press; Harte & Koele,
2001).
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1.1 Structural modeling

Structural modeling uses a multiple regression approach
to identify how cues or attributes are utilized in making
judgments (Brehmer, 1994; Doherty & Brehmer, 1997;
Doherty & Kurz, 1996). Specifically, a set of judgments
(criterion) is predicted by cue values (predictors). Re-
gression weights can be interpreted as indicators for in-
dividuals’ usage of cues in their judgments. Structural
modeling usually does not aim to analyze processes (as in
the paramorphic approach; see Hoffman, 1960) but input-
output relations between cues and judgments only (i.e.,
as-if models; but see Bröder, 2000, Exp. 1). Although the
method was tremendously useful in showing that people
integrate information in a weighted compensatory man-
ner when making more or less intuitive judgments (Do-
herty & Brehmer, 1997; Hammond, Hamm, Grassia, &
Pearson, 1987), its focus on outcomes limits its applica-
bility for differentiating among process models.

1.2 Process tracing

Process tracing methods record and analyze parameters
of information search before judgments or decisions and
aim to infer decision strategies from the amount, distri-
bution and order of information search. For instance,
information boards are often used in which information
is provided behind hidden information cards, which are
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opened on request or by mouse-click (e.g., Payne et al.,
1988; Rieskamp & Hoffrage, 1999).

This method allows differentiating between decision
strategies because some of them differ in their predictions
concerning information search. A simple take-the-best
strategy (TTB, Gigerenzer & Goldstein, 1996; cf. Fish-
burn, 1974), for example, assumes that persons first look
up the predictions of the most predictive (valid) cue for
all options. The option with the best cue value is selected.
If options are tied, the second most valid cue is consid-
ered, and so on. In contrast, according to an equal weight
strategy (EQW, Payne et al., 1988), individuals look up
all cue information for the first option and sum them up.
Then they do the same for the second option and so on
and select the option with the highest sum of cue val-
ues. Hence, a cue-wise information search (i.e., search
along cues) and a strong focus on the most valid cue are
used as indicators for the usage of TTB (or similar non-
compensatory strategies) and an option-wise information
search and an equal inspection of all cues indicate the us-
age of EQW (or other compensatory strategies).

Despite being highly useful for investigating deliber-
ate strategies, standard process-tracing methods such as
Mouselab (Payne et al., 1988) influence strategy selec-
tion and hinder people from applying intuitive-automatic
decision strategies (Glöckner & Betsch, 2008c; see also
Norman & Schulte-Mecklenbeck, in press). One rea-
son for this is that classic process tracing methods in-
duce a serial information search and prevent quick com-
parisons between options and the formation of holistic
impressions. One might argue that intuitive-automatic
processes cannot be captured by the analysis of informa-
tion search at all. This conclusion, however, seems to
be too strong considering the successful use of less in-
trusive methods such as eye-tracking technology to in-
vestigate intuitive processes (e.g., Glöckner & Herbold,
2008). Eye-tracking methods even provide further depen-
dent measures (e.g., eye-fixation duration and physiolog-
ical arousal; Horstmann, Ahlgrimm, & Glöckner, under
review), which could be included in strategy classifica-
tion.

1.3 Comparative model fitting

The more recently-developed comparative-model-fitting
approach uses a maximum likelihood method to compare
choices with the predictions of a set of decision strategies
(Bröder & Schiffer, 2003a; Bröder, in press; Wasserman,
2000). For instance, assume one observes choices in 10
decisions from which 6 are in line with the predictions of
TTB and 8 are in line with the prediction of EQW. An ob-
vious scheme would be to classify persons according to
the amount of strategy compatible choices — with 8/10
choices in line with EQW, and only 6/10 in line with TTB,

we would classify this person as consistent with EQW.
However, this simple counting method leads to biased re-
sults if strategies predict random choices for some of the
tasks (Bröder & Schiffer, 2003a; Bröder, in press).

Maximum likelihood estimation provides a more ele-
gant means of performing strategy classification that is
not prone to this source of bias. The basic idea is sim-
ple: comparative model fitting determines the strategy
that would most likely have produced the observed choice
pattern under the assumption of a constant error rate in
applying the strategy. For the example above, the best es-
timates for the error rates in strategy application would
be .40 (i.e., 4/10 “errors” in applying a TTB strategy)
and .20, respectively. According to the binomial equation
(see also equation 1, below), the likelihood that exactly
the observed number of strategy conforming choices (6
out of 10 correct under the assumption of an error rate of
.40) was produced by TTB is .25 whereas the respective
likelihood for EQW is .30. Hence, it is more likely that
choices were produced by application of EQW than by
TTB.

In contrast to classic process-tracing methods, the
comparative model fitting approach avoids influencing
decision behavior by the measuring method and never-
theless allows process models to be tested. However, the
method is applicable only when strategies make different
choice predictions. If strategies make the same predic-
tions for choices, the likelihoods for the strategies will
obviously always be equal.

Unfortunately, strategies often make exactly the same
choice predictions. This is due to the fact that the prin-
cipally investigated decision strategies (e.g., TTB and
EQW) are special cases of a weighted additive strategy
(WADD). According to a WADD strategy, for each op-
tion the cue information is weighted by its importance
(or validity) and added up. The option with the highest
weighted sum is chosen (Payne et al., 1988). Although
this strategy sounds quite different from TTB and EQW,
it can be easily shown that WADD predicts the same
choices as TTB. This is always the case if the validity of
each cue is higher than the sum of the validity of all less
valid cues (Bröder, 2000; Lee & Cummins, 2004). Sim-
ilarly, WADD predicts the same choices as EQW if the
validity of all cues is similar or equal. Hence, in a strict
sense, classification for EQW and TTB based on choices
only never rules out that a more complex WADD strat-
egy was used. A person could have used WADD with
a specific cue weighting scheme instead. Therefore, in
all studies relying on the choice-based strategy classifi-
cation method (e.g., Bröder & Schiffer, 2003b; Bröder &
Gaissmaier, 2007) the estimated proportions of TTB and
EQW users are upper limits for the usage of these sim-
ple strategies whereas the usage of WADD is likely to be
underestimated.
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The problem of similar choice predictions becomes
even more severe if one considers that people might
also use intuitive decision strategies. Intuitive decision
strategies often also predict choices that follow weighted
additive information integration without the assumption
that individuals calculate weighted sums (Busemeyer &
Johnson, 2004; Glöckner & Betsch, 2008b; Hammond,
Hamm, Grassia, & Pearson, 1987). Therefore, based on
the analysis of choices only, they cannot be distinguished
from WADD nor, in a strict sense, from TTB and EQW
either.

In this article I aim to show that the problem can be
solved in that the method for comparative model fitting
based on maximum likelihood estimation of choices sug-
gested by Bröder and Schiffer (2003a) is extended by in-
cluding additional dependent measures such as decision
time and confidence (for earlier approaches, see Berg-
ert & Nosofsky, 2007; Glöckner, 2006). A Multiple-
Measure Maximum Likelihood (MM-ML) strategy clas-
sification method is suggested that allows identifying de-
cision strategies even if they make the same choice pre-
dictions and different predictions concerning only one of
the other dependent variables (i.e., decision time, confi-
dence). Further advantages of the inclusion of additional
dependent measures will be discussed.

2 Examples for strategy classifica-
tion

To apply a strategy classification method, it is necessary
to select a set of strategies that allows for deriving predic-
tions concerning choices, decision time, and confidence.
Furthermore, item types have to be selected for which
the strategies make different predictions on as many de-
pendent variables as possible. These types have to be
repeatedly presented (e.g., 10 times; Bröder & Schiffer,
2003a). In this analysis I focus on choices in proba-
bilistic inference tasks, in which persons select the better
of two goods based on recommendations of four advi-
sors (cues) with different reliability of recommendations
(i.e., cue validity). The considered strategies are WADD,
TTB, EQW, a random choice strategy (RAND), and an
intuitive parallel constraint satisfaction strategy (PCS;
Glöckner & Betsch, 2008b). The choice predictions of
PCS and WADD are essentially equal (considering differ-
ent cue-validity transformation functions) and hence the
strategies cannot be differentiated based on choices only.
The steps to derive the strategies’ predictions concerning
choices, decision times and confidence are explained in
detail elsewhere (Glöckner, in press) and the most im-
portant aspects will be summarized below. The resulting
predictions for six types of items are shown in Table 1.
It is assumed that an experiment was conducted in which

each item type was presented 10 times (in individually
randomized order), and choices, decision times and con-
fidence were recorded.

2.1 Specification of WADD

In order to derive predictions from WADD, it has to
be determined how cue validities are used in calculat-
ing weighted sums. In this paper it is assumed that per-
sons correct their weights for the fact that binary cues
with a validity of .50 have no predictive power (w = v
- .50; cf. Glöckner & Betsch, 2008c). Although some-
times stated otherwise, choice predictions (as well as time
and confidence predictions) of WADD are not invariant
to this transformation. In the following I use the label
WADDcorrected when referring to the predictions of such a
WADD strategy with corrected weights.

2.2 Decision Time Predictions

Decision-time predictions for the deliberate strategies
TTB, EQW, and WADD are determined according to the
number of elementary information processes necessary to
apply the strategy (Payne et al., 1988). For instance, for
item types 1 to 5 (see Table 1), according to TTB, only
one cue has to be considered, whereas for item 6, two
cues have to be considered, which necessitates applying
more elementary information processes. For statistical
reasons, decision time predictions are transformed to con-
trast weights which add up to zero and have a range of 1.
For WADD and EQW, no differences in decision times
are predicted and all contrast weights are set to zero. For
PCS decision time predictions were derived from a sim-
ulation of the underlying network model (i.e., based on
the iteration the PCS algorithm needs to find a consistent
solution; Glöckner & Betsch, 2008b).

2.3 Confidence Predictions

Confidence predictions of TTB were derived based on the
validity of the differentiating cue (Gigerenzer, Hoffrage,
& Kleinbölting, 1991). For WADD and EQW the dif-
ference between the weighted (unweighted) sums of cue
values for the two options was calculated and used as pre-
diction for confidence. For PCS the predictions were de-
rived from model simulations (i.e., based on the differ-
ence between the activation of the options after the con-
sistent solution was found).



Judgment and Decision Making, Vol. 4, No. 3, April 2009 Multiple-measure strategy classification 189

Table 1: Item types and predictions of strategies.

Types of decision tasks

1 2 3 4 5 6
A B A B A B A B A B A B

Cue 1 (v = .80) + – + – + – + – + – – –
Cue 2 (v = .70) + – + – – + – – – + – –
Cue 3 (v = .60) + – – + – + – – + – + –
Cue 4 (v = .55) – + – + – + – + – + – +

Choice Predictions

TTB A A A A A A
EQW A A:B B A:B A:B A:B
WADDcorrected A A B A A A
PCS A A B A A A

Time Predictions (contrasts)

TTB −0.167 −0.167 −0.167 −0.167 −0.167 0.833
EQW 0 0 0 0 0 0
WADDcorrected 0 0 0 0 0 0
PCS −0.400 −0.310 0.600 −0.120 0.110 0.130

Confidence Predictions (contrasts)

TTB 0.167 0.167 0.167 0.167 0.167 −0.833
EQW 0.667 −0.330 0.667 −0.330 −0.330 −0.330
WADDcorrected 0.630 0.230 −0.370 0.030 −0.170 −0.370
PCS 0.620 0.280 −0.320 −0.010 −0.190 −0.380

Note. Items types and predictions of decision strategies. In the upper part of the table, the item types are
presented. The cue validities v are provided beside each cue. Below the predictions concerning choices are
shown. A and B stand for the predicted option. “A:B” indicates random choices between A and B. The lower
part of the table shows predictions for decision times and confidences expressed in contrast weights that add
up to zero and have a range of 1. Contrast values represent relative weights comparing different cue patterns
for one strategy.

3 The maximum likelihood strategy
classification method for choices

The maximum likelihood strategy classification method
for choices calculates the conditional likelihood of an ob-
served set of choices for different types of tasks j given
the application of a certain decision strategy k and a con-
stant error rate εk. The likelihood values of the different
strategies are compared and individuals are classified as
users of the strategy that most likely produced the ob-
served choices. For each of the choices and each strategy,
it is determined if the choice was in line with the predic-
tion of the strategy or not. Let nj be the number tasks of

type j that are presented and let njk be the number of cor-
rect predictions of strategy k. The likelihood of observing
a certain number of correct predictions njk given a con-
stant error rate follows a binomial distribution. Hence,
the likelihood of observing a set of choices given a strat-
egy k and a constant error rate εk can be calculated by:

Lk(C) = p(njk|k, εk) =
J∏

j=1

(
nj

njk

)
(1−εk)njkε

(nj−njk)
k .

(1)

The single free parameter εk can be estimated using stan-
dard statistical software packages such as STATA or, in
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this simple case, by:

ε̂k =




J∑

j=1

(nj − njk)


÷




J∑

j=1

nj


 . (2)

Individuals are classified as users of the strategy with the
highest likelihood value Lk(C). If a strategy does not dif-
ferentiate between options for a specific type of items,
individuals are assumed to guess and εk is assumed to be
.5 for this type. Bröder and Schiffer (2003a) showed in
simulations that up to an error rate of 25% the method
differentiates well between strategies which make dif-
ferent predictions concerning choices (i.e., classification
error below 20%).1 In decision research, the method
has been successfully applied to judgments and choices
based on probabilistic inference (e.g., Bröder, 2003; for
an overview see Bröder, in press; Bröder & Gaissmaier,
2007; Bröder & Schiffer, 2003b, 2006; Glöckner, 2006,
2007) and decisions under risk (Glöckner & Betsch,
2008a).

An earlier publication (Glöckner, 2006) highlighted
the limitations of this method and made a first attempt
to use decision times in individual strategy classifica-
tion. To differentiate between intuitive and deliberate de-
cision strategies with equal choice predictions, paired t-
tests were used to compare individuals’ decision times
in choices for different item types, for which one strat-
egy predicts no difference and the other does. A sim-
ilar method was used in a recent work by Bergert and
Nosofsky (2007). This method can be criticized in dif-
ferent respects: (a) it does not take into account the to-
tal fit of decision times to the total set of predictions of
the strategies but is based on pair-wise comparisons of
two types of items only, (b) it gives a certain strategy
the advantage of the null hypothesis without controlling
for the beta-error,2 and (c) the results of the choice-based
strategy classification (i.e., Lk(C)) and the t-test(s) (i.e., t
and p value) for choices cannot easily be integrated into
one single measure of fit for the strategy. While the first
two problems might be circumvented using correlation
measures and estimating the beta-error based on the ex-
pected effect size and number of observations, the third
problem is harder to tackle (Glöckner, in press). The
Multiple-Measure Maximum Likelihood strategy classi-
fication method which is introduced next solves the first
and the last and reduces the second problem by using one

1Note, however, that the exact estimations of classification errors
depend crucially on the number of item types and items per type (nj).

2The strategy that predicts no difference in decision time is often
given the advantage of being the null-hypothesis. Only if a significant
difference in the direction predicted by the other strategy is found the
null-hypothesis is rejected and a classification for the alternative strat-
egy is done. As discussed elsewhere (Glöckner, in press), with small n
this leads to over-classification for strategies that predict no differences
because the beta-error is bigger than conventional alpha levels.

single maximum likelihood measure for choices, decision
times and confidence.

4 Multiple-Measure Maximum
Likelihood (MM-ML) strategy
classification

Maximum likelihood estimation is, of course, not limited
to dichotomous outcomes (i.e., choices) but can also be
applied to continuous variables such as decision times.
However, estimation of the likelihood of a set of obser-
vations necessitates assumptions about the distribution
underlying the data generation process for the variable.
One standard assumption is that log-transformed deci-
sion times are normally distributed (Bergert & Nosofsky,
2007, Appendix C). Under this assumption, the likeli-
hood value of observing a log-transformed decision time
x given N[µ, σ] can be derived from the density function
of the normal distribution:

p(x|µ, σ) =
1√

2πσ2
e−

(x−µ)2

2σ2 , (3)

and for a set of i independent observations ~x drawn from
the same distribution by:

Lk(T ) = p(~x|µ, σ) =
I∏

i=1

1√
2πσ2

e−
(xi−µ)2

2σ2 . (4)

The density function of the normal distribution (equation
3) contains two parameters. The mean is represented by
µ, the standard deviation is indicated by σ (π and e are
of course constants). The variable x indicates the value
for which the likelihood value should be determined. Ac-
cording to the properties of a normal distribution, the like-
lihood value of x decreases with increasing distance from
µ (because the exponent of e becomes a higher negative
number) and it also decreases with decreasing σ. The
total likelihood of events is the product of the single like-
lihoods of these events. Therefore in equation 4 the to-
tal likelihood for all observed decision times results from
multiplying the likelihood of all single events (as indi-
cated by the product sign).

Under the assumption that choices and decision times
are independent (for a more detailed discussion of the is-
sue of independence see below), the likelihood of observ-
ing a set of choices and decision times given the applica-
tion of a strategy k, a constant error rate for choices εk,
and decision times that are drawn from a unique normal
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distribution N[µ, σ] is:

Lk = Lk(T )Lk(C) = p(njk, ~x|k, εk, µ, σ) =
J∏

j=1

(
nj

njk

)
(1− εk)njkε

(nj−njk)
k ×

I∏

i=1

1√
2πσ2

e−
(xi−µ)2

2σ2 . (5)

Equation 5 should obviously be applied only for decision
strategies such as WADD and EQW, which predict equal
decision times for all considered types of tasks. Strategies
TTB and PCS make (interval-scaled) predictions. Let us
denote these predictions ti and assume that they are scaled
as contrast weights which add up to 0 and have a range of
1. Let us further assume that decision times for the item i
are drawn from different normal distributions with means

µi = µ + tiR, (6)

in which R represents a (non-negative and to be esti-
mated) scaling parameter. The likelihood value for ob-
serving a set of choices and decision times drawn from
different normal distributions (with equal σ)3 can then be
calculated by inserting equation 6 in equation 5:

Lk = p(njk, ~x|k, εk, µ, σ,R) =
J∏

j=1

(
nj

njk

)
(1− εk)njkε

(nj−njk)
k ×

I∏

i=1

1√
2πσ2

e−
(xi−(µ+tiR))2

2σ2 . (7)

Furthermore, assuming that confidence judgments are in-
dependent of choices and decision times and normally
distributed, confidence estimation can be added to equa-
tion 7 in the same manner as decision time.4 From ex-
tending equation 7 and adding subscript T and C for pa-
rameters referring to decision time and confidence, re-

3Alternatively, it could be assumed that σ differs between item types
and increases with increasing ti. Although this relation might also be
modeled in ML calculation, for simplicity a constant σ should be as-
sumed.

4The assumption that confidence judgments are normally distributed
is rather common (e.g., Merkle, Sieck, & Van Zandt, 2008). For a dis-
cussion of the independence assumption, see below.

spectively, results in equation 8:

Ltotal =
p(njk, ~xT , ~xC |k, εk, µT , σT , RT , µC , σC , RC) =

J∏

j=1

(
nj

njk

)
(1− εk)njkε

(nj−njk)
k ×

I∏

i=1

1√
2πσ2

T

e
− (xTi

−(µT +tTi
RT ))2

2σ2
T ×

I∏

i=1

1√
2πσ2

C

e
− (xCi

−(µC+tCi
RC ))2

2σ2
C . (8)

This equation contains seven free parameters. For deci-
sion strategies that make different predictions for decision
times and confidence for the considered item types (i.e.,
PCS, TTB) all seven parameters will be estimated. For
strategies that predict equal decision times, the parame-
ter RT is not necessary (i.e., EQW, WADD) and hence
only six parameters have to be estimated. Similarly, RC

can be omitted if a strategy makes all equal predictions
for confidences. For a RAND strategy, RT and RC can be
omitted as well as the error parameter εk which is set to
be .50 (indicating random choices). Hence, for a RAND
strategy only 4 parameters are estimated.

Likelihood values Lk should be corrected for the differ-
ent numbers of free parameters Np using the Bayesian In-
formation Criterion (BIC) which also takes into account
the number of observations Nobs (Schwarz, 1978):

BIC = −2 ln(L) + ln(Nobs)Np. (9)

Individuals should be classified as users of the strategy
which has the lowest BIC value. The number of inde-
pendent observations Nobs, which is used to calculate the
BIC, is not always equal to the number of total obser-
vations. According to STATA 10.0 Online Manual, the
number of independent categories (i.e., types of tasks)
should be used if it can be assumed that the instances of
these categories are highly correlated. This is the case
for our data because responses to the repeated presenta-
tions of one type of items should be similar. I compared
results using the total number of observations per person
(Nobs = 60 [tasks]* 3[choice, decision time, confidence]
= 180) and the number of independent categories (i.e.,
types) (Nobs = 6 * 3 = 18) in the simulation reported be-
low and indeed found that the usage of the latter formula
seems to be preferable.

The simulations investigated whether choices, decision
times and confidence data generated by different strate-
gies with certain error rates for choices and different ef-
fect sizes for decision time and confidence are correctly
classified using the MM-ML method. I expected that this
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method a) is capable of identifying the decision strategy
that generated the data, b) is not biased in favor of one or
the other strategy, c) differentiates appropriately between
strategies which make identical choice predictions (if the
effect size for time and confidence is sufficiently large),
and d) leads to less misclassifications than the usage of
the choice-based strategy classification.

5 Simulation

5.1 Method
The simulation used the 5 decision strategies and 6 types
of tasks from Table 1. I assumed that these tasks were
presented 10 times each, resulting in a total of 60 choices.
In the simulation, the choices, decision times and con-
fidence were generated by the 5 strategies TTB, EQW,
WADD, PCS, and RAND. The error rate for choices var-
ied from 5% to 25% in steps of 5%. I also manipulated
the size of the differences between decision times and
confidences for different types of items in relation to the
standard deviation. To do this, I drew data from normal
distributions N(µ = contrast weight, σ = sd) in which the
mean was the contrast weight defined in Table 1 and the
standard deviation sd was varied on the levels 0.8, 1, 1.33,
and 2. Remember that the contrast weights are scaled to
a range of 1. Hence, sd = 1 means that for comparing the
fastest with the slowest item type, the effect size is 1. The
maximum effect sizes produced by our manipulation of
sd are consequently 1.25, 1, 0.75 and 0.5. For simplicity,
sd was manipulated jointly for decision times and con-
fidences. For each combination from each strategy, 100
data sets were generated and the MM-ML strategy clas-
sification was applied. Hence, in the simulation I used a
5 (data-generating decision strategy) x 5 (error rate) x 4
(standard deviation) x 100 (repetitions) design. Simula-
tions were run using a BIC correction with Nobs = 18 and
Nobs = 180. The results for Nobs = 18 are reported only
because they were consistently better (i.e., less biased in
favor of strategies with less parameters).5

5.2 Results
Figure 1 shows the classification results by data gener-
ating strategy and maximal effect size (i.e., inverse of
sd) aggregated over the manipulation of error rate. The
classification for data generated by TTB and EQW were
almost perfect. The classification of data generated by
WADD was very good as well, although there was a small

5Following Schwarz (1978) we used BIC instead of the alternative
Akaike information criterion AIC = -2*ln(Likelihood) + 2*Np. Note,
that using AIC in the simulations led to results similar to using Nobs = 18
except for the fact that strategies with more parameters were classified
somewhat more often (because 2 < ln(18)).
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Figure 1: Strategy classification results by data generat-
ing strategy for 60 observations.

constant amount of misclassification in favor of PCS. Re-
member that WADD and PCS make equal choice predic-
tions. Hence, the method generated very few misclas-
sifications in favor of the more complex strategy (with
one additional parameter). On the other hand, the accu-
racy of the classification of data produced by PCS de-
pended crucially on the effect size. As one would expect,
with decreasing effect size the number of misclassifica-
tion in favor of the strategy not predicting a difference
(i.e., WADD) increased. For our small number of obser-
vations, the maximal effect size (i.e., measured between
the most extreme items only) of 1.25 and 1 led to accept-
able results. Below that, misclassifications prevailed. Fi-
nally, data produced by a RAND strategy are to a certain
degree misclassified as being produced by EQW. Note
that this misclassification was likely to be due to the fact
that, for the selected item types, EQW predicts random
choice for 4 out of 6 considered types. These misclassifi-
cations could be reduced by including a limit error rate of
.30 for all systematic strategies and not classifying partic-
ipants with higher error rates (see discussion below).

The manipulation of the error rate in strategy applica-
tion had only a minor influence on strategy classification
results for all levels of sd. The results concerning the in-
fluence of error rate on strategy classification are shown
in Figure 2. The left part shows the result aggregated for
strong effects (sd ≤ 1) and the right side for weaker ef-
fects (sd > 1). As one could have expected, for strong
effects, strategy classification also worked quite well be-
tween PCS and WADD. The classification between these
strategies with equal choice predictions was considerably
worse if the effect was weaker. There was a strong ten-
dency towards misclassification in favor of the strategy
that does not predict differences in response times (i.e.,
WADD) as compared to the strategy that predicted differ-
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Figure 2: Strategy classification results by error rate in strategy application for strong effects (sd≤1, left) and weaker
effects (sd>1, right).

ences (i.e., PCS). Hence with weaker effects the method
is biased in favor of the strategy that predicts no differ-
ence (i.e., null hypothesis). In the high effect-size condi-
tions, the increasing error rate had almost no increasing
effect for misclassifications (Figure 2, left) whereas in-
creasing error rate led to increasing misclassifications in
the lower effect-size conditions (Figure 2, right).

To investigate whether the MM-ML method leads to
fewer strategy misclassifications than the classic choice
based strategy classification by Bröder and Schiffer
(2003a), I rerun the same analysis using the choice
based strategy classification method and excluding PCS
(because it obviously could not be differentiated from
WADD based on choices only). In line with findings by
Bröder and Schiffer, the analysis worked very well, but
revealed an increasing misclassification rate with an in-
creasing error rate (Figure 3).

A considerable number of choices that were produced
by RAND were wrongly classified as being produced by
EQW. This bias was stronger as compared to the one ob-
served for the MM-ML method (see Figure 1). In Table
2 the classification results for both methods are directly
compared for ε = 0.25. It can be seen that over all strate-
gies the MM-ML method leads to a higher level of correct
classifications as compared to the choice based strategy
classification (cf. bold numbers in the diagonals of Table
2).

A final simulation investigated the influence of the
number of observations on the quality of the strategy
classification with the MM-ML method. Therefore the
number of observations used in the analysis was raised
from 60 to 120 (i.e., by using 20 instead of 10 decisions
per item type). Doubling the number of observation in-
creased the quality of classification (Figure 4). With 120
observations the classifications of TTB, EQW, WADD,
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Figure 3: Strategy classification based on choices only by
data generating strategy and error rate in strategy appli-
cation.

and RAND were close to perfect. With the higher num-
ber of observations, the classification of PCS was also
satisfactory for a lower maximum effect size (i.e., 0.75)
but for the lowest maximum effect size (i.e., 0.5) there
were still a considerable number of misclassifications in
favor of WADD.

5.3 Discussion

The simulations revealed that the inclusion of decision
times and confidences in the analysis generally improves
strategy classification. This is particularly the case if the
effects for both variables are strong. If the effects are
strong, the method also allows differentiating reliably be-
tween strategies which make the same choice predictions.
In cases with weaker effects, the method is increasingly
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Table 2: Comparison of strategy classification methods.

Strategy classification

Data
generating
strategy

TTB EQW WADD/
PCS RAND

Choice-based strategy classification
TTB 0.93 0.01 0.01 0.00
EQW 0.01 0.79 0.11 0.07
WADD/PCS 0.02 0.06 0.88 0.01
RAND 0.06 0.30 0.04 0.61
Overall 1.01 1.14 1.03 0.68

MM-ML strategy classification
TTB 0.96 0.00 0.03 0.01
EQW 0.01 0.94 0.03 0.03
WADD/PCS 0.01 0.02 0.96 0.01
RAND 0.00 0.15 0.02 0.83
Overall 0.98 1.10 1.04 0.88

Note. Numbers represent percentages of strategy clas-
sification for the respective strategy (in columns) for
an error rate of ε = .25 only. In the MM-ML method,
WADD and PCS are combined concerning data gener-
ating strategy and strategy classification for compara-
tive reasons.

biased in favor of the strategies which predict no differ-
ence concerning decision times and choices (i.e., which
has less free parameters). This problem obviously occurs
with any statistical test because the latter strategies have
the advantage of being the null hypothesis.

The simplest way to circumvent the problem is to in-
clude items for which particularly strong differences in
confidence and decision time are expected. Additionally,
more items could be used to increase power by increas-
ing within-subjects sample-size. An increase from 10 to
20 choices per item type reduces the bias in favor of the
null hypothesis considerably. Finally, one might consider
using a different correction of the likelihood than the BIC
correction (similar to setting a compromise alpha level).
However, to the best of my knowledge there is no sim-
ple method to find the correct adjustment (although it
could, of course, be derived from simulations). Hence
including items with expected large differences and in-
creasing the number of items seem to be preferable. Note
that previous studies found strong effects for confidence
and time in probabilistic inference tasks (Glöckner, 2006;
Glöckner & Betsch, 2008c), as well as in gambling tasks
(Glöckner & Betsch, 2008a; Glöckner & Herbold, 2008).
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Figure 4: Strategy classification results by data generat-
ing strategy for 120 observations.

These findings indicate that biased classification due to
weak effect size might not be too much of a problem.
However, researchers should check the size of the effect
in pre-tests, or they should at least calculate it before in-
terpreting their results.

6 Applying the MM-ML method in
research practice

Applying the MM-ML method obviously necessitates the
use of a statistical package that allows for calculating
complex maximum likelihood estimations. I have pro-
grammed the necessary estimation routines in STATA.
The estimation programs are described in the supplemen-
tary material (http://journal.sjdm.org/vol4.3.html). Ap-
plying the method mainly requires bringing data into a
specific format and defining predictions. The overall es-
timation program (which can be applied to any number
of item types, choices per item, participants, and strate-
gies) provides per-individual estimates of the parameters
for each strategy (Figure 5, top), as well as an aggregated
matrix with the total likelihood (i.e., BIC score) that the
data for each individual (in rows) were produced by a par-
ticular strategy (in columns) (Figure 5, bottom).

The STATA output will be explained in more detail.
The individual output (Figure 5, top) shows the results
for comparing the data of subject 1 with the predictions
of strategy 4 (see last line of output). The total num-
ber of observations is 126 (6 frequencies for choices in
task types, 60 decision times, 60 confidence ratings).
The resulting parameter estimates are listed as constant
coefficients. In the example, the choice error rate (ep-
silon) was .167, the log-transformed (and for order ef-
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Figure 5: Example output of the STATA implementation of the Multiple-Measure Maximum Likelihood strategy
classification method for parameters per individual (top) and for the overall estimation (bottom). The individual
output contains estimates for all coefficients and the overall fit of the individual data to the prediction of the considered
strategy. The overall estimation shows BIC scores for each individual (rows) and each of the five considered strategies
(columns). Lower scores indicate a better fit.

fects corrected) mean decision time was 8.57 (mu_Time),
the mean confidence (mu_Conf ) was 53.98. The provided
significance tests (which test if the estimated constant co-
efficient is different from zero) are mainly informative for
the rescaling factors R. In this example, RT (R_Time) and
RC (R_Conf ) were both significantly different from zero.
This indicates that the specific predictions for time and
confidence (reflected in contrast weights) significantly
contribute to explain the data. The tests for R produce
results similar to correlations between data and contrast
weights (i.e., the correlations of observed decision times
with the contrast weights for the respective task types).6

The BIC score (last line) indicates the overall fit of data
and strategy predictions for the specific participant. More
precisely, it gives the corrected log-transformed likeli-
hood for the data given the application of a certain strat-
egy under the assumptions of a constant error rate ε, nor-

6Differences result from the fact that the parameter is estimated
jointly with the other parameters in the MM-ML method.

mally distributed decision times and confidence ratings,
and independence between observations.

The lower part of Figure 5 shows the output for the
results of all individual comparisons. It presents the re-
sulting BIC scores for each subject (in rows) and consid-
ered strategy (in columns; i.e., TTB, EQW, WADD, PCS,
RAND). Lower values indicate a better fit. The exam-
ple result of subject 1 and strategy 4 is consequently pre-
sented in row 1, column 4 of the matrix. The strategy that
explains a subjects’ data best can be easily determined by
identifying the lowest number in the persons’ row (e.g.,
the data of subject 1 are most likely generated by strategy
1).

The MM-ML method has been successfully applied to
empirical data (i.e., Figure 5 is based on real data) and it
appears that for the types of items considered here (us-
ing 60 observations only) the method is well applicable.
Additional practical suggestions on the application of the
method are given in Glöckner (in press).
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7 Limitations of the method and
suggested solutions

7.1 Exhaustive Set of Strategies
The quality of strategy classification is crucially depen-
dent on the set of competing strategies that are consid-
ered. As pointed out by Bröder and Schiffer (2003a), one
has to assume that (optimally) an exhaustive set of strate-
gies is investigated. Although the selection of an exhaus-
tive set of strategies is practically not possible, the sug-
gested statistical method (and also the provided STATA
program) can be used to compare any number of strate-
gies. Pragmatically, researchers should nevertheless aim
to consider only plausible strategies to hold the analysis
manageable.

7.2 Criterion for classification of strategy
use

Absolute value. One of the frequently raised questions
for ML-strategy classification is whether there should be
a criterion of fit that has to be reached in order to clas-
sify a person as having used a systematic strategy. Could
an absolute likelihood or BIC value (e.g., BIC < 500) be
defined that has to be reached for a classification? Con-
sidering equation 8 the answer has to be no. The total
likelihood and also the BIC score crucially depend on the
number of observations considered. The BIC score in-
creases (and the likelihood decreases) with the amount
of considered observations because more likelihood val-
ues (which are usually smaller than 1) are multiplied with
each other.

Error in choices. The simplest (advisable) criterion
for non-classification is to use a criterion that determines
the maximal acceptable error rate in choices for system-
atic strategies. The lowest useful criterion is .50 (chance
level). Considering the simulation results, a somewhat
stricter criterion of ε < .30 could be advisable for low
numbers of observations. If a researcher has good reason
to believe that participants make only few errors (i.e., in-
centivized environment with clearly structured informa-
tion), even more strict criteria might be used. The aspired
limit error rate can be easily changed in the STATA es-
timation program (see supplementary material). Setting
a stricter error rate limit for all systematic strategies in-
creases the number of cases in which persons are classi-
fied as users of RAND. Note that a RAND strategy should
always be included in the strategy classification. This as-
sures that for strategy classification a systematic strategy
has to be better than a random choice after correcting for
the additional free parameters.

Bayes ratio. Another possibility is to compare like-
lihoods by determining the Bayes ratio. The Bayes ra-

tio is calculated by dividing the likelihood value of the
most likely strategy by the likelihood of the second most
likely strategy (Wasserman, 1999). The reliability of a
classification increases with increasing Bayes ratio. Ac-
cording to Wasserman (1999) ratios larger than 3 can be
considered moderate evidence for the model which might
be considered a lower limit for strategy classification.
Note however that the Bayes ratio is calculated on like-
lihoods that are not corrected for number of free param-
eters. Hence, comparing a strategy which makes differ-
ential predictions for choices, times and confidence (e.g.,
PCS) with a strategy which does not (e.g., RAND) would
lead to biased Bayes ratios. The application of Bayes ra-
tios as criterion for classification vs. non-classification is
therefore in a MM-ML method often not possible.

7.3 Independence of observations assump-
tion

As mentioned above, the multiplication of likelihoods
used in the MM-ML method (i.e., equation 8) relies on
the assumption that likelihood values for choice, deci-
sion times and confidence are independent of each other.
Considering the finding that decision time and confi-
dence are often negatively correlated (e.g., Glöckner &
Betsch, 2008c), this assumption might seem question-
able at first glance. A closer look, however, reveals that
such a correlation does not challenge the independence
assumption underlying the MM-ML method because the
method takes into account correlations that are predicted
by strategies. In Table 1 it can be seen that the correlation
between confidence and time should be r =−1 according
to TTB and r = −.85 according to PCS (assuming that
all 6 cue combinations are equally likely). Remember
that likelihoods are calculated based on the assumption
that values (for time and confidence) are normally dis-
tributed around the predicted mean for the respective item
type (see equation 6). Therefore likelihoods are based on
deviations from the mean after correcting for systematic
differences in means (i.e., correlations of residuals after
partialling out systematic effect of item types).

Furthermore, note that in the simulations reported
above these systematic correlations between time and
confidence were also induced to the data by generating
them from the predictions of the strategies (Table 1).
The size of the correlation was implicitly manipulated
by adding relatively small or large error terms to these
systematic components (i.e., increasing correlation with
increasing maximal effect size). Hence, the simulations
also show that these correlations do not lead to biases in
strategy classification.
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7.4 Correction for learning effects

It can be expected that decision times decrease over time,
particularly if persons have to repeat each item type 10
or more times. This could harm strategy classification
based on decision time. To avoid systematic biases in-
duced by order, an individually randomized presentation
order should be used. Furthermore, it is advisable to re-
duce error variance by partialling out the effect of order
on log-transformed decision times and to use the result-
ing residuals instead of the raw values in the MM-ML
method.

7.5 Dependence of parameters and estima-
tion of strategies with additional pa-
rameters

Another possible caveat for the method might be that
the different estimated parameters are not mutually in-
dependent. For instance, it might be argued that σ in-
creases with increasing µ (i.e., heteroscedasticity). This
can, however, be easily handled in STATA by including
one parameter as predictor for the other in the estima-
tion program (Gould, Pitblado, & Sribney, 2006). Before
doing so, it is necessary, however, to have a good hypoth-
esis about the relation of the parameters. Furthermore,
one might want to test strategies that have free parame-
ters themselves (e.g., Bergert & Nosofsky, 2007; Buse-
meyer & Johnson, 2004; Busemeyer & Townsend, 1993;
Nosofsky & Bergert, 2007). This can, of course, also be
handled by including these strategy-parameters in the es-
timation. Finally, if strategies make predictions on only
one of the continuous variables the method can be applied
in a simplified version (as indicated in equation 7).

8 General discussion

The Multiple-Measure Maximum Likelihood strategy
classification method allows for identifying individuals’
decision strategies by taking into account choices, deci-
sion times and confidence judgments at the same time. In
contrast to earlier approaches for including decision time
into strategy classification (Bergert & Nosofsky, 2007;
Glöckner, 2006; for an overview, see Glöckner, in press),
it allows estimating the overall likelihood of the data
given the application of a strategy and comparing any
number of strategies based on the whole set of observa-
tions. The method allows differentiating between strate-
gies that make the same choice predictions as long as their
effects on decision time and confidence are sufficiently
large. With decreasing effect sizes and small numbers
of observations, the method is biased towards the strat-
egy with fewer parameters. It is therefore advisable to

use types of items for which large differences in times
and confidences are expected, to use sufficient items per
item type and to check the effect size before interpreting
the results concerning strategies which make equal choice
predictions.

It could be shown that including decision times and
confidences reduces the proportion of misclassification as
compared to the choice-based strategy classification by
Bröder and Schiffer (2003a). Therefore, it is advisable
to use the MM-ML method even in cases where different
choice predictions can be derived from different strate-
gies.

Besides providing an overall maximum likelihood
measure, the MM-ML method provides a tool to improve
our understanding of the processes underlying decision
making. It allows investigating the fit for the different de-
pendent variables separately for each strategy and each
individual. As can be seen in Figure 5 (left), the method
provides a significance test for the scaling parameters RC

and RT, which indicates whether the specific prediction
for confidence or decision time of the respective strategy
was in line with the data or not. Process models might be
improved based on this knowledge by simply counting
the number of significant predictions for each dependent
variable.

8.1 Further applications and extensions

The MM-ML method is very general and not limited
to investigate probabilistic inference tasks or to deci-
sion research in general. It can be applied for testing
any kind of models for cognitive processes that make
predictions concerning dichotomous behavior, response
times and confidences (e.g., gambling tasks, recognition
tasks, multi-attributive decisions). For example, recent
research on strategy selection in gambling decisions (e.g.,
Glöckner & Betsch, 2008a) could be extended by record-
ing choices, decision times and confidence and compar-
ing the total data with predictions of different models
(e.g., prospect theory, decision field theory, PCS, priority
heuristic). The method can, of course, also be extended to
further (normally distributed) dependent measures which
can basically be included in the analysis in the same way
as decision time and confidence (see above). A possi-
ble extension of particular interest to those investigating
intuition could be measures for the distribution of eye-
fixations and physiological arousal which can both be
captured by recent eye-tracking technology (Glöckner &
Herbold, 2008; see also Hochman, Glöckner, & Yechiam,
in press). For the investigation of deliberate strategies
only, classic mouselab measures for information search
such as the Payne index (Payne et al., 1988) could also be
potentially included in the analysis.
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In sum, the MM-ML method is an easy to use and re-
liable method for individual level strategy classification,
which can be applied for intuitive and deliberate strate-
gies. Application of the method, however, necessitates
well specified models (Glöckner, in press). The MM-
ML method has the major advantage to test strategies or
models considering all their predictions at the same time.
Furthermore, it will help to improve process models by
providing much more detailed information on the fit of
predictions for different dependent measures.
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