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SUPPLEMENTARY	MATERIALS	

Supplementary	note	1:	Summary	statistics	

	

Study	1:	Risky	choice	dataset.	Subjects	chose	the	safe	option	in	66.1%	of	the	trials	(s.d.	=	20%).	

The	mean	estimate	of	the	loss	aversion	coefficient	𝜆	was	2.68	(s.d.	=	1.65),	ranging	from	0.75	

to	7.56	across	subjects.	The	mean	RT	when	choosing	the	safe	option	was	1.57	s	(s.d.	=	0.47),	

when	choosing	the	risky	option:	2.38	s	(s.d.	=	1.42)	(RT	in	the	histogram	below	truncated	to	

5	s	for	presentation	purposes).	

	

Figure	S1.	Choice	and	RT	distributions	in	the	risky	choice	dataset.	

	

Study	2:	Intertemporal	choice.	Subjects	chose	the	later	option	in	49%	of	the	trials	(s.d.	=	24%).	

The	mean	estimate	of	the	discount	coefficient	𝑘	was	0.01	(s.d.	=	0.008),	ranging	from	0.0007	

to	0.34	across	subjects.	The	mean	RT	when	choosing	the	later	option	was	1.29	s	(s.d.	=	0.28),	

when	choosing	the	sooner	option	was	1.27	s	(s.d.	=	0.24).	
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Figure	S2.	Choice	and	RT	distributions	in	the	intertemporal	choice	dataset.	

	

Study	3:	Social	preference.	(a)	Disadvantageous	inequality.	Subjects	chose	the	altruistic	option	

in	15%	of	the	trials	(s.d.	=	9%).	The	mean	estimate	of	the	preference	parameter	𝛼	was	-0.09	

(s.d.	=	0.19),	ranging	from	-0.46	to	0.64	across	subjects.	The	mean	RT	when	choosing	the	

altruistic	option	was	3.08	s	(s.d.	=	1.1),	and	the	selfish	option	was	2.63	s	(s.d.	=	0.97).	

	

Figure	S3.	Choice	and	RT	distributions	in	the	social	preference	dataset	(disadvantageous	

inequality).	
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(b)	Advantageous	inequality.	Subjects	chose	the	altruistic	option	in	33%	of	the	trials	(s.d.	=	

20%).	The	mean	estimate	of	the	preference	parameter	𝛽	was	0.36	(s.d.	=	0.32),	ranging	from	

-0.34	to	1.07	across	subjects.	The	mean	RT	when	choosing	the	altruistic	option	was	2.81	s	

(s.d.	=	0.9),	when	choosing	the	selfish	option	was	2.5	s	(s.d.	=	0.9).	

	

Figure	S4.	Choice	and	RT	distributions	in	the	social	preference	dataset	(advantageous	

inequality).	
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Supplementary	Note	2:	Estimation	methods	

Choice-based	method	

We	 estimate	 each	 individual	 preference	 function	 𝑢(⋅ |𝜃),	 where	 𝜃	 is	 a	 subject-specific	

parameter	(temporal	discount	factor,	 loss	aversion,	or	 inequity	aversion),	 in	the	standard	

way	as	follows.	We	assume	that	for	each	pair	of	options	and	choice	𝑎 = 1,2	the	error	terms	

in	utilities	follow	the	type	I	extreme	value	distribution,	so	the	probability	of	choosing	option	

1	is	a	logistic	function	

𝑝(𝑎1 = 1) = 2
23456(78(⋅|9)57:(⋅|9))

,		 	 	 	 (1)	

where	 𝜇	 and	 𝜃	 are	 free	 parameters	 that	 can	 be	 estimated	 for	 each	 subject	 individually	

maximizing	a	likelihood	function		

𝐿𝐿 = ∑ (log(𝑝(𝑎A = 1)) ⋅ 1(𝑎B = 1) + logD1 − 𝑝(𝑎A = 1)F ⋅ 1(𝑎B = 2)),A 		 (2)	

where	𝑛	is	the	trial	number,	𝑎A	is	the	choice	made	by	the	subject	on	that	trial,	and	1(⋅)	is	the	

indicator	function.		Figure	S1	shows	the	subject	level	correlations	between	the	predicted	and	

the	actual	choices.	

	

Top	RT	decile	method	

For	each	decision	problem	on	each	trial	𝑛,	we	calculate	the	indifference	parameter	value	𝜃A1AH 	

as	a	solution	to	the	equation	

𝑢2(⋅ |𝜃A) = 𝑢I(⋅ |𝜃A).		 	 	 	 (3)	

Then	we	average	the	indifference	values	on	the	trials	in	the	top	RT	decile	to	obtain	the	final	

parameter	estimate:	

𝜃K = ∑ (LMNMOM ⋅2(P(QRM)ST.U))
∑ 2(P(QRM)ST.U)M

,		 	 	 	 (4)	
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where	𝑅𝑇A	is	the	response	time	on	trial	𝑛,	𝐹(⋅)	is	the	empirical	RT	distribution	for	the	specific	

subject,	and	1(⋅)	is	the	indicator	function.	

	

Local	regression	(LOWESS)	method	

As	the	top	10%	approach	only	utilizes	part	of	the	data,	we	developed	another	approach	

based	on	 the	peaks	 in	RTs,	 this	 time	using	all	 the	available	RT	data.	The	 local	 regression	

(LOWESS)	 method	 also	 uses	 the	 “revealed	 indifference”	 approach:	 for	 each	 individual	

subject,	we	run	a	local	polynomial	regression	of	RTs	on	the	indifference	parameter	values	

and	use	that	regression	to	identify	the	indifference	value	that	produces	the	highest	predicted	

RT	(see	Figure	4f).	As	the	peak	of	this	line	is	typically	close	to	the	choice-based	estimate	and	

the	observations	with	the	highest	RTs,	this	method	is	quite	similar	in	its	predictions	to	the	

top-RT-decile	method.	This	method	requires	the	researcher	to	choose	the	local	regression	

smoothing	parameter.	Here	we	use	a	value	of	0.5	as	it	produces	the	best	results	across	all	of	

the	data	sets	(though	other	values	can	work	better	for	specific	datasets;	see	Figure	S7).	

As	 in	 the	 previous	 method,	 for	 each	 decision	 problem	 on	 each	 trial	 𝑛,	 we	 estimate	 the	

indifference	parameter	value	𝜃A1AH 	solving	the	equation	

𝑢2(⋅ |𝜃A) = 𝑢I(⋅ |𝜃A).		 	 	 	 (5)	

For	 each	 individual	 subject,	 we	 regress	 response	 time	 log	(𝑅𝑇)	 in	 every	 trial	 𝑛	 on	 the	

corresponding	 indifference	 parameter	 value	 𝜃A1AH 	 using	 a	 local	 polynomial	 regression	

(LOWESS,	(Cleveland,	1979))	in	the	R	package	stats:	

𝑅𝑇 = 𝑔D𝜃A1AHF + 𝜀A.		 	 	 	 	 (6)	

Then	 we	 obtain	 the	 parameter	 estimate	 𝜃K	 by	 inverting	 the	 fitted	 regression	 line	 at	 the	

maximum	predicted	response	time	𝑅𝑇\ :	
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𝜃K = 𝑔]^2DmaxD𝑅𝑇\FF.			 	 	 	 (7)	

Although	this	approach	generally	produces	results	similar	to	the	top	decile	approach,	it	

can	 be	 affected	 by	 outliers	 (e.g.	 sparse	 data	 and	 unusually	 high	 RTs	 around	 extreme	

indifference	 points)	 and	 thus	 sometimes	 misestimates	 individual	 subject	 parameters,	

producing	predictions	that	are	in	some	cases	worse	than	those	produced	by	the	top	RT	decile	

approach:	social	choice	𝛼:	r	=	0.12,	p	=	0.52;	social	choice	𝛽:	r	=	0.6,	p	=	0.001;	intertemporal	

choice	𝑘:	r	=	0.44,	p	=	0.01;	risky	choice	𝜆:	r	=	0.88,	p	<	0.001;	Pearson	correlations.	This	can	

be	mitigated	by	using	a	specific	smoothing	parameter	for	each	data	set,	but	our	goal	was	to	

identify	a	method	that	works	well	across	all	the	datasets.	

	

Drift-diffusion	model	(DDM)	method	

In	 the	 DDM	 a	 latent	 decision	 variable	 evolves	 over	 time	with	 an	 average	 drift	 rate	 plus	

Gaussian	noise	(the	Wiener	diffusion)	until	it	reaches	one	of	two	pre-determined	boundaries,	

which	correspond	to	the	two	choice	options.	Given	the	boundary	separation	parameter,	the	

drift	 rate,	 the	 non-decision	 time	 (the	 component	 of	 RT	 not	 attributable	 to	 the	 decision	

process	itself,	e.g.	moving	one’s	hand	to	indicate	the	choice),	and	the	variance	of	the	Gaussian	

noise,	it	is	possible	to	calculate	choice	probabilities	and	choice-contingent	RT	distributions.		

In	the	model,	we	assume	that	a	subject	observes	a	set	of	alternatives	𝑗 ∈ {1,2}.	The	choice	

process	involves	two	components:	a	constant	boundary	threshold	𝑏	and	a	decision	variable	

𝑦(𝑡)	that	evolves	over	time	according	to	the	following	differential	equation:	

	 	 	 	 	 𝑑𝑦(𝑡) = 𝑣 ∙ 𝑑𝑡 + 𝜎 ∙ 𝑑𝑊		 	 	 	 (8)	

where	𝑦(𝑡)	 is	accumulated	evidence	towards	option	1	(with	𝑦(0) = 0),	𝑣	 is	 the	drift	rate,	

which	is	assumed	to	be	a	linear	function	of	the	subjective-value	difference:	
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	 	 	 	 	 𝑣 ≡ 𝑧 ⋅ (𝑢2(𝜃) − 𝑢I(𝜃)),	 	 	 	 (9)	

where	𝑧 ∈ 𝑅3	is	a	scaling	parameter,	𝑢q(⋅)	is	the	subjective	value	of	the	given	alternative,	and	

𝜃	 is	 the	 subject-specific	 parameter.	 Finally,	 𝜎 ∙ 𝑑𝑊	is	 a	 Wiener	 process	 (i.e.	 Brownian	

motion)	that	represents	Gaussian	white	noise	with	variance	𝜎I.		Without	loss	of	generality,	

we	normalize	𝜎 = 1	as	it	can	only	be	identified	up	to	scale	(due	to	the	arbitrary	units	on	y).	

We	define	the	response	time	𝑅𝑇	as	the	first	time	that	the	absolute	value	of	the	decision	

variable	 reaches	 a	 boundary	 𝑏 ∈ 𝑅3,	 plus	 a	 non-stochastic	 component	 known	 as	 non-

decision	time	(𝜏 ∈ 𝑅3,	typically	interpreted	as	the	time	that	a	subject	needs	to	process	the	

information	on	the	screen):	

	 	 	 	 𝑅𝑇 = min{𝑡: |𝑦(𝑡)| ≥ 𝑏} + 𝜏.	 	 	 (10)	

The	choice	outcome	𝑎 ∈ {1,2}	is	defined	as	follows:	

	 	 	 	 𝑎 = w 1	𝑖𝑓	𝑦
(𝑅𝑇) = 𝑏

2		𝑖𝑓	𝑦(𝑅𝑇) = −𝑏	 	 	 	 (11)	

Now,	 assuming	 without	 loss	 of	 generality	 𝑣 ≥ 0,	 we	 can	 calculate	 the	 choice	

probabilities	𝑝(𝑎 = 𝑗),	 the	 expected	RT,	 and	 an	 approximate	probability	density	 function	

(PDF)	for	the	RTs	(minus	𝜏)	as	follows	(Wabersich	&	Vandekerckhove,	2014):	

	 	 	 	 	 𝑝(𝑎 = 1) = z
4:{|^2

4:{|^45:{|
			𝑖𝑓	𝑣 > 0

2
I
																									𝑖𝑓	𝑣 = 0

		 	 (12)	

	 	 	 	 	 𝐸[𝑅𝑇] = �
�
�
�1 − I

4:{|^45:{|
� + 𝜏				𝑖𝑓	𝑣 > 0

𝑏I + 𝜏																																		𝑖𝑓	𝑣 = 0	
							 (13)	

				 										𝑓(𝑡) = �
��:

𝑒^
{:�
: ∑ (−1)�^2𝑚 ⋅ 𝑒^

�:�:�
�|:�

��2 sin ���
I
� (𝑒�� + 𝑒^��)	 								(14)	
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We	 use	 a	 density	 function	 of	 the	 Wiener	 distribution	 from	 the	 RWiener	 R	 package		

(Wabersich	and	Vandekerckhove	2014)		to	estimate	the	likelihood	(14)	for	the	observed	RT	

on	every	given	trial	assuming	a	set	of	parameters	(𝑏, 𝜏, 𝑧, 𝜽),	where	𝜽	is	a	vector	of	individual	

subjects’	parameters.	Essentially,	the	identification	of	the	individual	parameters	is	possible	

due	 to	 the	 fact	 that	RTs	 are	predicted	 to	 vary	 as	 the	 subjective	value	difference	𝑣	 varies	

across	trials	and	subjects.		

One	alternative	way	to	assess	the	goodness-of-fit	 is	to	examine	the	number	of	choices	

that	are	consistent	with	the	estimated	parameter	values.		To	do	so,	we	used	the	RT-estimated	

parameters	to	identify	the	“preferred”	alternatives	in	every	trial	and	compared	those	to	the	

actual	choice	outcomes.	RT-estimated	parameters	were	able	to	explain	a	high	proportion	of	

choices	in	the	datasets	(social	choice	𝛼:	79%	respectively	(p	<	0.001);	social	choice	𝛽:	80%	

(p	<	0.001);	intertemporal	choice:	76%	(p	<	0.001);	risky	choice:	77%	(p	<	0.001);	p-values	

denote	 two-sided	Wilcoxon	 signed	 rank	 test	 significance	 at	 the	 subject	 level,	 comparing	

these	proportions	to	chance).	For	a	stricter	test,	we	calculated	an	average	of	all	indifference	

points	for	each	experiment	(which	roughly	corresponds	to	the	mean	of	the	experimenter’s	

prior	parameter	distribution)	and	made	choice	predictions	for	each	subject	using	this	single	

value.	 The	 DDM	 accuracy	 rates	 beat	 this	 baseline	 in	 two	 out	 of	 four	 cases	 (for	 the	

intertemporal	choice	and	social	choice	𝛽,	p	<	0.05,	two-sided	Wilcoxon	signed	rank	test). 

	

Chabris	et	al.	(2009)	method	

Here	 we	 follow	 the	 method	 suggested	 by	 Chabris	 et	 al.	 (2009),	 which	 uses	 the	 full	 RT	

distribution	to	estimate	the	preference	parameters.	

Let	the	difference	in	the	two	utilities	on	trial	n	be	
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𝛥A ≡ |𝑢2A(⋅ |𝜃) − 𝑢IA(⋅ |𝜃)|.		 	 	 	 (15)	

Assume	that	the	decision	difficulty	is	a	convex	and	decreasing	function	of	this	difference:	

𝛤(𝛥A) ≡
I

234��M
,		 	 	 	 	 (16)	

where	𝜔	is	a	free	parameter.	

The	 response	 times	 are	 then	 modeled	 as	 a	 function	 of	 the	 trial	 number	 and	 the	 choice	

difficulty:	

𝑅𝑇A = 𝛽T + 𝛽2𝑛 + 𝛽I𝛤(𝛥A) + 𝜀A.		 	 	 	 (17)	

To	estimate	the	set	of	parameters	(𝜃K, 𝜔�, 𝛽�T, 𝛽�2, 𝛽�I)	we	follow	the	original	paper	and	minimize	

the	error	function		

∑ D𝑅𝑇A − 𝛽T − 𝛽2𝑛 − 𝛽I𝛤(𝛥A)F
I.A 		 	 	 	 (18)	

Unlike	Chabris	et	al.	(2009),	we	estimate	this	model	for	every	individual	subject	(see	Table	

S1).	

	

	 	



 10 

SUPPLEMENTARY	TABLES	

	

Table	S1	

		 DDM	 Chabris	et	al	(2009)	 Top	10%	RT	 LOWESS	(0.5)	

Social	choice	(𝛼)	 0.39	 0.22	 0.44	 0.12	

Social	choice	(𝛽)	 0.52	 0.53	 0.56	 0.6	

Intertemporal	choice	 0.57	 0.59	 0.71	 0.44	

Risk	choice	 0.36	 0.16	 0.64	 0.88	

	

Pearson	correlation	between	parameters	estimated	from	choices	and	RTs,	at	the	subject	

level.	The	best	performing	method	for	each	data	set	is	shown	in	bold.	For	estimation	

methods	details	see	Supplementary	Note	2.	
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SUPPLEMENTARY	FIGURES	

	

Figure	S5.	Subject-level	correlation	(Pearson)	between	choice	proportions	in	the	data	

and	as	predicted	by	choice-estimated	preference	functions	(see	Supplementary	Note	

2	for	details).	The	solid	lines	are	45	degrees.	
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Intertemporal	choice	
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Figure	S6.	Parameter	recovery	for	three	parameter	estimation	methods:	DDM	using	

only	RT	(top	left	panel),	top	10%	RT	trials	(top	middle	panel),	and	LOWESS	regression	

(top	 right	 panel).	 For	 each	 dataset	 we	 generated	 101	 simulated	 subjects	 with	 the	

preference	parameter	varying	from	the	lowest	to	the	highest	indifference	value	used	in	the	

experiment,	using	the	same	set	of	decision	problems,	with	the	other	parameters	of	the	DDM	

fixed	at	the	median	values	across	real	subjects.	For	each	simulated	subject	(each	having	216	

(intertemporal),	224	(risky),	48	(social	𝛼),	and	72	(social	𝛽)	trials)	we	recovered	the	value	

of	the	preference	parameter	using	the	three	methods	described	in	Supplementary	Note	2.	

The	bottom	panel	 in	each	plot	shows	the	mean	absolute	error	 for	all	 three	methods.	The	

scatter	plots	report	Pearson	correlations	between	the	simulated	and	the	recovered	values	of	

the	preference	parameter.	
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Figure	S7.	The	DDM	estimates	of	subjects’	preference	function	parameters,	estimating	

DDM	 parameters	 at	 the	 group	 level.	 Subject-level	 correlation	 (Pearson)	 between	

parameters	estimated	from	choice	data	and	RT	data	using	the	drift-diffusion	model	(DDM).	

The	solid	lines	are	45	degree	lines.	
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Figure	S8.	The	DDM	estimates	of	subjects’	preference	function	parameters,	fitting	the	

model	 to	 each	 subject	 individually.	 Subject-level	 correlation	 (Pearson)	 between	

parameters	estimated	from	choice	data	and	RT	data	using	the	drift-diffusion	model	(DDM),	

including	 only	 the	 subjects	 with	 parameters	 estimated	 within	 the	 range	 of	 indifference	

points	in	the	experiment	(red	dotted	lines).	The	solid	lines	are	45	degree	lines.	
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Figure	S9.	Choice	prediction	accuracy	as	a	function	of	the	percentage	of	slowest	trials	

used	 in	 the	parameter	estimation	 from	1	 to	100%.	Averaging	 the	 longest	10-20%	RT	

trials	 provides	 the	 best	 choice	 prediction	 accuracy.	 The	 solid	 black	 lines	 denote	 mean	

prediction	accuracy	across	subjects,	the	shaded	areas	show	standard	errors	at	the	subject	

level,	the	red	dots	above	the	graphs	indicate	significant	difference	from	the	baseline	at	the	p	

=	0.05	level	for	each	corresponding	percentile	(Wilcoxon	signed	rank	test).	The	baseline	is	

the	 average	 of	 all	 indifference	 points	 across	 trials.	 It	 is	 important	 to	 emphasize	 that	 the	
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baseline	 to	which	we	 compare	 the	 predictive	 power	 is	 not	 chance	 (50%)	 as	 almost	 any	

experimenter	uses	some	prior	knowledge	of	the	parameter	distribution	in	the	population	to	

select	their	choice	problems.		For	example,	an	experimenter	studying	intertemporal	choice	

might	select	a	set	of	choice	problems	so	that	the	average	subject	would	choose	the	immediate	

option	half	of	the	time	and	the	delayed	option	the	other	half	of	the	time.		So	if	you	were	to	

average	the	indifference	points	from	the	trials	in	such	an	experiment,	you	would	be	able	to	

predict	behavior	quite	accurately,	on	average.		In	such	an	experiment,	behavior	in	trials	with	

extreme	indifference	points	will	be	very	predictable.		That	is,	on	a	trial	designed	to	make	a	

very	 patient	 subject	 indifferent,	 most	 subjects	 will	 have	 a	 strong	 preference	 for	 the	

immediate	option.	 	Similarly,	on	a	trial	designed	to	make	an	impatient	person	indifferent,	

most	subjects	will	have	a	strong	preference	for	the	delayed	option.		Thus	behavior	in	many	

of	an	experiment’s	 trials	 is	quite	easy	to	predict	because	those	trials	are	only	 included	to	

identify	 parameter	 values	 for	 extreme	 subjects.	 	 For	 instance,	 a	 single	 loss-aversion	

coefficient	of	𝜆 = 2	can	predict	about	75%	of	choices	in	our	risky-choice	dataset.	
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Figure	S10.	Choice	prediction	accuracy	as	a	function	of	the	smoothing	parameter	of	

the	 LOWESS	 regression	model.	 The	 solid	 black	 lines	 denote	mean	 prediction	 accuracy	

across	subjects,	the	shaded	areas	show	standard	errors	at	the	subject	level.	
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