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Strategies for exploration in the domain of losses

Paul M. Krueger∗† Robert C. Wilson‡† Jonathan D. Cohen§¶

Abstract

Many decisions in everyday life involve a choice between exploring options that are currently unknown and exploiting options

that are already known to be rewarding. Previous work has suggested that humans solve such “explore-exploit” dilemmas

using a mixture of two strategies: directed exploration, in which information seeking drives exploration by choice, and random

exploration, in which behavioral variability drives exploration by chance. One limitation of this previous work was that, like

most studies on explore-exploit decision making, it focused exclusively on the domain of gains, where the goal was to maximize

reward. In many real-world decisions, however, the goal is to minimize losses and it is well known from Prospect Theory that

behavior can be quite different in this domain. In this study, we compared explore-exploit behavior of human subjects under

conditions of gain and loss. We found that people use both directed and random exploration regardless of whether they are

exploring to maximize gains or minimize losses and that there is quantitative agreement between the exploration parameters

across domains. Our results also revealed an overall bias towards the more uncertain option in the domain of losses. While this

bias towards uncertainty was qualitatively consistent with the predictions of Prospect Theory, quantitatively we found that the

bias was better described by a Bayesian account, in which subjects had a prior that was optimistic for losses and pessimistic for

gains. Taken together, our results suggest that explore-exploit decisions are driven by three independent processes: directed

and random exploration, and a baseline uncertainty seeking that is driven by a prior.
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1 Introduction

On your drive in to work you run into traffic. Do you “exploit”

the route you have taken many times, a familiar option that

is likely to make you 30 minutes late, or do you “explore” a

road that you have not tried before, an unfamiliar option the

outcome of which is unknown? Exploring could be bad if

the road is long or you encounter an unanticipated obstacle;

but if the road is faster, you could make up some lost time.

Either way the information you gain from exploring could

be useful the next time your commute is slow.

Such “explore-exploit” decisions are ubiquitous in daily

life, from the mundane moments, such as picking out a TV

show, to major life choices, such as selecting a spouse. The-

oretically, computing an optimal solution to the explore-

exploit dilemma is impossible in all but the simplest set-
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tings (Gittins, 1979), and there is a great deal of interest

in how humans and animals solve the dilemma in practice

(Meyer & Shi, 1995; Banks, Olson & Porter, 1997; Aston-

Jones & Cohen 2005; Daw, O’Doherty, Dayan, Seymour &

Dolan, 2006; Cohen, McClure & Yu, 2007; Frank, Doll, Oas-

Terpstra & Moreno, 2009; Steyvers, Lee & Wagenmakers,

2009; Payzan-LeNestour & Bossaerts, 2011; Lee, Zhang,

Munro & Steyvers, 2011; Payzan-LeNestour & Bossaerts,

2012; Zhang & Yu, 2013; Teodorescu & Erev 2013).

While the explore-exploit tradeoff has been defined in

various ways (Mehlhorn et al., 2015), here we focus on two

particular types of exploration that we identified in a previous

study (Wilson et al., 2014). In particular, our previous work

suggests that humans solve the explore-exploit dilemma with

a mixture of two strategies: directed exploration in which

exploration is driven by explicit information seeking, and

random exploration in which exploration is driven by chance

through behavioral variability. A key insight in identifying

these strategies was the idea that exploration should change

with the number of choices that will be made in the future

— the time “horizon”. When the horizon is long, it is often

better to start by exploring, as there will be plenty of time in

the future to make use of new information. When the horizon

is short, it is often better to exploit a more familiar option,

since there is less opportunity to learn and put that learning

to use. With this horizon manipulation, we were able to

identify directed exploration as an increase across horizon in

selecting the more uncertain option, and random exploration

as an increase across horizon in behavioral variability.
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One limitation of our previous work was that, like most

work on the explore-exploit dilemma, it focused exclusively

on decisions in the domain of gains, where the subjects’ goal

was to find the most rewarding option. However, many deci-

sions, such as the traffic-jam example above, involve choices

for which the goal is to minimize losses. Logically, decisions

about gains and losses should be equivalent, but psycholog-

ically many human decisions are strongly influenced by the

shift in outcome valence (Kahneman & Tversky, 1979).

One well-known asymmetry in how humans respond to

reward valence is the reflection effect, whereby subjects are

risk averse for gains and risk seeking for losses (Baucells

& Villas 2007; Weller, Levn & Tversky, 1979; Tversky &

Kahneman, 1992). Similar effects are also seen in decisions

under ambiguity in which subjects are ambiguity averse for

gains but ambiguity seeking for losses (Einhorn & Hogarth,

1986; Kahn & Sarin, 1988; Di Mauro & Maffioletti, 1996;

Kuhn, 1997; Di Mauro & Maffioletti, 2002; Ho, Keller &

Keltyka, 2002; Abdellaoui, Vossmann & Weber, 2005; Du

& Budescu, 2005; Chakravarty & Roy, 2009; Davidovich

& Yassour, 2009). Unlike risk, for which the uncertainty

arises from known outcome probabilities, ambiguity arises

when outcome probabilities are unknown and is thus the

main type of uncertainty associated with exploratory options.

These findings for increased risk and ambiguity seeking in

the losses domain suggest an overall increase in uncertainty

seeking for losses. That is, decisions in the domain of losses

are biased towards the option with the more variable out-

come.

This switch in uncertainty preference between gains and

losses suggests that subjects should show a bias toward the

uncertain option in the loss domain, but that this bias will

not change with the time horizon. This is because behav-

ior driven by uncertainty seeking is not the same as explo-

ration, which is driven by information seeking. Uncertainty

seeking values outcome variability itself, irrespective of its

potential future use; information seeking favors an uncertain

option because it provides more information for the future.

Therefore, information seeking scales with time horizon, as

information becomes more valuable over a long horizon, but

uncertainty seeking does not. Thus, manipulating the time

horizon should provide a way to experimentally distinguish

uncertainty seeking and exploration.

While Prospect Theory predicts increased uncertainty

seeking in the loss domain, other possibilities exist. For

example, a simple win-stay/lose-shift heuristic would pre-

dict more exploration in the domain of losses and, indeed,

such a model was recently found to predict exploratory be-

havior better than Prospect Theory (Lejarraga & Hertwig

2016). This finding was also consistent with previous work

by the same authors showing that people spend more time

searching in the loss domain in a purely information seeking

task (Lejarraga, Hertwig & Gonzalez 2012). Another possi-

bility, and one that we consider in detail here, is that people

have different priors for gains vs. losses — that is they are

more optimistic when the glass is half empty than when the

glass is half full.

In this study we compared exploratory behavior and un-

certainty seeking in the domains of gain and loss. We ran

a modified version of our earlier experiment (Wilson et al.,

2014) with the addition of a losses condition. In this task,

subjects made a series of explore-exploit decisions between

two options, both of which yielded either positive (gains con-

dition) or negative (losses condition) outcomes. As before

we quantified directed exploration as an increase across hori-

zon in information seeking, an “information bonus”, and ran-

dom exploration as an increase across horizon in behavioral

variability, or “decision noise”. In addition, we quantified

uncertainty seeking as the bias toward the more uncertain

option that was independent of horizon.

Consistent with our previous work, we found directed and

random exploration in the gains condition. We also found

identical directed and random exploration in the losses con-

dition. This suggests that both directed and random explo-

ration strategies are used in the domain of losses in the same

way as they are in the domain of gains.

In addition to directed and random exploration, we also

found an overall increase in uncertainty seeking in the do-

main of losses that was not modulated by horizon. This un-

certainty seeking is qualitatively consistent with the Prospect

Theory prediction of increased uncertainty seeking with

losses. However, a quantitative analysis revealed this bias

to be inconsistent with predictions of Prospect Theory, but

consistent with a Bayesian account in which subjects incor-

porate a prior that is optimistic in the case of losses and

pessimistic in the case of gains.

In general, our findings are consistent with an interpreta-

tion in which explore-exploit decisions are driven by three

independent processes: baseline uncertainty seeking that is

driven by a prior that is optimistic for losses and pessimistic

for gains, and directed and random exploration, driven by

information seeking and decision noise, respectively, that

scale with horizon irrespective of valence.

2 Methods

2.1 Subjects

39 subjects (22 women, mean age 22.5, range 18–42) were

recruited from the Princeton campus and surrounding area.

Subjects were paid $12 for their time plus a performance

bonus of up to $3.

2.2 Gains and losses task

The experiment was a version of the “Horizon Task” from

Wilson et al. (2014) that was modified to include two valence

conditions (gains or losses) for each subject. The valence
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Figure 1 — Task design. Screenshots of four different

games showing the gains condition (A & B) and losses condi-

tion (C & D), and the horizon 1 condition (A & C) and horizon

6 condition (C & D). In the gains condition, points are added

to subjects’ scores, and in the losses condition, points are

subtracted. The height of the bandits represents the game

length, either 5 or 10 trials. The first four trials of every game

are forced, wherein subjects are instructed which bandit to

select. In the [1 3] unequal uncertainty condition illustrated

here, subjects are instructed to choose one option once and

the other three times. In the [2 2] equal uncertainty condition,

not shown, subjects play both options twice. Free-choice tri-

als are cued by a pair of green squares located inside the box

of each bandit. Once a subject presses a button to choose

a bandit, the lever of that bandit flips down and the number

of points for that bandit is displayed, followed by the onset of

any remaining free-choice trials.

conditions were divided into two blocks, with block order

counterbalanced across subjects. The Horizon Task is used

to measure directed and random exploration by comparing

behavior across short and long time horizons.

Briefly, subjects played a series of games, each lasting ei-

ther 5 or 10 trials, in which they made decisions between two

slot machines or “one-armed bandits”, of the sort one might

find in a casino (Figure 1). When played, each bandit yielded

a probabilistic outcome that either added (in the gains con-

dition) or subtracted (in the losses condition) points ranging

from 1 to 99. This outcome was sampled from a Gaussian

distribution (rounded to the nearest integer), the standard de-

viation of which was fixed throughout the experiment at 8

points. The mean of the underlying Gaussian changed from

game to game but was fixed within each game. The mean of

the Gaussian was different for each bandit and therefore one

bandit was always better than the other on average. For each

game, the mean of one option was set to a “center mean” of

40 or 60 points for the gains condition, and –60 or –40 for

the losses condition; the mean of the other option was set

relative to the mean of the first, with a difference in means

of –30, –20, –12, –8, –4, 4, 8, 12, 20, or 30 points.

To control the information subjects had about the bandits

before they made a choice, the first four trials of every game

were “forced trials” in which subjects were instructed which

option to select. This instruction was given by a green square

in the next empty box of the bandit to be selected. Only

after selecting the instructed bandit was the subject able

to proceed. Once that bandit was selected, a number was

revealed for that bandit, and “XX” was displayed for the

other bandit to indicate that it had not been played on that

trial. The four forced trials were used to set up one of two

uncertainty conditions: an unequal uncertainty (or [1 3])

condition in which one option was played once and the other

three times, and an equal uncertainty (or [2 2]) condition in

which each option was played twice.

After the four forced trials, subjects were given at least one

free choice between the two bandits, indicated by a green

square in the next open slot on each bandit. Thereafter,

either the game ended or they had 5 additional opportunities

to select from the same bandits. Thus, after the forced trials,

subjects had a horizon of either 1 (in games with 5 trials)

or 6 (in games with 10 trials). This horizon manipulation

eliminated the explore-exploit dilemma in horizon 1, while

leaving it intact in horizon 6, allowing us to distinguish

baseline uncertainty preference and decision noise (observed

equally in horizon 1 and horizon 6) from changes in these

factors associated with exploration (observed as increases

from horizon 1 to horizon 6 in selecting the more uncertain

option and in behavioral variability).

Finally, the games were organized into two separate blocks

per subject, one involving gains and the other involving

losses. The order of these blocks was counterbalanced across

subjects. The horizon conditions and uncertainty conditions,

as well as center mean, difference in mean, and the side of

the ambiguous option (left or right) were all randomly in-

terleaved (separately for each subject) and fully counterbal-

anced across each gains vs. losses block, such that there were

160 unique games in each block (2 horizon conditions x 2

uncertainty conditions x 2 center means x 10 differences in

means x 2 sides). The side of the bandit (left or right) with

a center mean of ±40 or ±60 versus the side of the bandit

with a mean offset from this value, as well as the order of the

http://journal.sjdm.org/vol12.2.html
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forced trials (determining which trial in 1–4 the ambiguous

option was revealed) were also randomized but not explicitly

counterbalanced.

Instructions for the task were presented onscreen before

the experiment began; see the Supplementary Material for

the full text of the instructions. They were explicitly told that

for a given game, one of the bandits would add more points

(gains condition) or subtract fewer points (losses condition)

on average, and hence be the better bandit to play. They were

also explicitly told that the variability in the outcome from

either bandit was fixed across the entire experiment. At the

start of each block they were again reminded of the valence

condition for that block.

2.3 Exclusion criteria

Subjects who performed at or below chance levels were ex-

cluded from further analyses. For each subject we used

Bayesian inference to infer the frequency, fhigh , with which

they chose the option with highest mean reward based on

the samples they had actually seen. In particular, we com-

puted the posterior distribution over fhigh given the data,

p( fhigh | α, β), as a beta distribution:

p( fhigh | α, β) ∝ f αhigh (1 − fhigh)β (Eq. 1)

where α was the number of times subjects chose the high

mean option and β was the number of times subjects chose

the low mean option. We then excluded subjects for whom

we inferred fhigh was less than or equal to 0.5 with greater

than 1% probability. That is, subjects were excluded when

∫ 0.5

0

p( fhigh | α, β)dfhigh > 0.01. (Eq. 2)

This test is equivalent to a Bayes factor comparing the model

fhigh < 0.5 to the model fhigh > 0.5, and setting a cut-off

of Bayes factor of 0.99 to classify subjects as contaminants.

This resulted in the exclusion of 5 subjects, leaving 34 for

the remaining analysis. Block order was counterbalanced

across these 34 subjects.

2.4 Behavioral analysis

We analyzed behavior on the task in two different ways. First,

we used a simple model-free analysis to illustrate our main

findings. Second, we used a more sophisticated model-based

approach to extract more sensitive estimates of uncertainty

bias, information seeking, and decision noise. Both analy-

ses lead to the same conclusions, so readers may skip over

the sections on the model-based analysis and results without

missing out on the main conclusions. In both analyses, we

focused solely on the first free-choice trial because this is

the only trial that can be fairly compared between horizon 1

and horizon 6 and because of a subtle confound that occurs

between reward and information after the first free choice

trial in horizon 6. In particular, because subjects tend to

choose high reward options, on average they gain more in-

formation about the higher value option than the lower value

option. This leads to a confound between the average re-

ward of an option and the amount of information it yields

that complicates the analysis in this and other explore-exploit

experiments (see Wilson et al., 2014, for a more complete

description of this reward-information confound).

2.4.1 Model-free analysis

In the model-free analysis, we focused on the first free choice

and defined model-free measures of directed and random ex-

ploration in the following way. We measured the fraction of

trials in which subjects chose the more informative (and also

more uncertain) option in the [1 3] condition, p(high info).

Directed exploration was measured as an increase in p(high

info) with the time horizon. Decision noise was quantified

as the fraction of trials in which subjects chose the low-mean

option in the [2 2] condition, p(low mean). Random explo-

ration was measured as an increase in p(low mean) with the

time horizon. The intuition behind this measure of decision

noise is that the more randomly people respond, the more

likely they will be to choose the low-mean option in the [2

2] condition, when it is always best to choose the high-mean

option.

2.4.2 Model-based analysis

We fit the behavioral data of the first free-choice trial using a

logistic model. This model assumes that decisions are made

by first computing a noisy value, Qa, for bandit a, and Qb

for bandit b, then choosing the option with the highest value.

In particular we assume that the value Qa is computed as

the weighted sum of four factors: the expected reward from

option a, Ra, the uncertainty associated with playing it, Ia,

its spatial location (i.e. the bandit on the left vs. the bandit

on the right), sa, and a logistic random noise term, n.

Qa = Ra + AIa + Bsa + σdn (Eq. 3)

In this equation, A denotes bias towards more informa-

tive/uncertain options, which for simplicity we call the in-

formation bonus, B is the spatial bias, and σd the standard

deviation of the decision noise. Ia was chosen such that

Ia = +1/2 if option a was the more uncertain option (i.e.

the option played once in the forced trials) in the [1 3] con-

dition, Ia = −1/2 if option a was the less uncertain option

(the option played three times in the forced trials) in the [1

3] condition, and Ia = 0 in the [2 2] condition. sa was set to

+1/2 if a was on the left-hand side of the screen and −1/2 if

a was on the right.

If we assume that subjects choose the option with highest

value and that by convention bandit a is always on the left

http://journal.sjdm.org/vol12.2.html
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−1
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Figure 2 — Graphical depiction of the hierarchical Bayesian model. In this plot, each node corresponds to a variable

in the model. Shaded nodes correspond to observed variables (e.g. choices) and unshaded nodes correspond to hidden

variables (e.g. information bonus or decision noise). Discrete variables are represented as squares and continuous variables

as circles. The group variables, which are illustrated as different “plates,” have different values for different games, g, subjects,

s, or conditions, n (defined by the valence, uncertainty and horizon). For each game, the observable data (shaded nodes)

consisted of a choice, cnsg, the difference in mean between each option, ∆Rnsg, and the difference in uncertainty between

each option, ∆Insg. The model estimates posterior distributions of both the single subject-level parameters: the information

bonus, Ans , decision noise, σns , and spatial bias, Bns , and the group-level parameters: µAn , σA
n , kσ

n , λσn , µBn and σB
n .

(for exposition, though not in actuality), then the probability

of choosing bandit a is

pa =
1

1 + exp(∆R+A∆I+B√
2σ

)
(Eq. 4)

where ∆R = Rb − Ra is the difference between the mean

observed outcomes from the forced-choice trials for bandits

a and b. ∆I = Ib − Ia is the difference in expected un-

certainty from choosing the two options, defined such that

∆I = 0 in the [2 2] equal uncertainty condition, ∆I = +1 in

the [1 3] unequal uncertainty condition, when bandit b was

more informative than bandit a (i.e. when bandit a had been

selected three times and bandit b only once) and ∆I = −1,

when bandit a was more uncertain than bandit b. Note that

defining ∆I in this way sets A, the information bonus, in

units of points.

We used a hierarchical Bayesian approach to fit the pa-

rameters of the model simultaneously at both the individual

and group levels. A graphical depiction of this hierarchical

model is shown in Figure 2, using the notation described in

Lee and Wagenmakers (2013). At the individual level, we

assumed that each subject, s, could have a separate informa-

tion bonus, Ans , decision noise, σns , and spatial bias, Bns ,

in each of the eight conditions, n, defined by the valence,

uncertainty, and horizon. At the group level, we assumed

that these parameters for each subject and condition were

sampled from population-level priors. Thus, the informa-

tion bonus for each condition was sampled from a Gaussian

distribution with mean µAn and standard deviation σA
n , i.e.

Ans ∼ Gaussian(µAn , σ
A
n )

The decision noise was sampled from a Gamma distribution

with shape parameter kσ
n and length scale λσn

σns ∼ Gamma(kσ
n , λ

σ
n )

and the spatial bias was sampled from a Gaussian with mean

µBn and standard deviation σB
n

Bns ∼ Gaussian(µBn , σ
B
n )

The hyperparameters, µAn , σA
n , kσ

n , λσn , µBn , and σB
n are

themselves assumed to come from hyperpriors whose pa-

rameters are set such that these hyperprior distributions are

very broad and have relatively little influence on the final

fits. In particular, the means µAn and µBn are assumed to come

from zero-mean Gaussian distributions with standard devia-

tion 1000; the standard deviations, σA
n and σB

n from Gamma

distributions with shape parameter 1 and length scale 0.001;
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Figure 3 — Performance plots. (A) Learning curves showing the fraction of responses in which subjects (solid lines) and

the optimal model (green asterisks) chose the bandit with the greater underlying generative mean, as a function of free-choice

trial number. (B) Performance of all 39 subjects in the gains and losses conditions. Five subjects performing at chance in

either condition were excluded (red crosses), while the remaining 34 subjects performed equally well in both the gains and

losses conditions.

the shape and length-scale parameters kσ
n and λσn come from

Exponential distributions with length scale 0.001.

All parameters (Ans , σns , Bns , µ
A
n , σA

n , kσ
n , λσn , µBn , and

σB
n ) were fit simultaneously using a Markov Chain Monte

Carlo (MCMC) approach to sample from the joint posterior.

This was implemented using the JAGS sampler (Plummer,

2003) via the Matjags interface (Steyvers, 2011). In all

we ran 4 separate Markov Chains with 500 burn-in steps to

generate 1000 samples from each chain with a thin rate of

5. Convergence was assessed through visual inspection (see

the Supplementary Material for serial plots of samples).

3 Results

3.1 Basic performance is similar for gains and

losses

We quantified performance as the fraction of times sub-

jects chose the objectively correct option, i.e. the bandit

who’s mean was actually highest. As shown in Figure 3A,

the group-averaged performance for all subjects (i.e., before

eliminating any subjects) was above chance (0.5) in all condi-

tions, with performance improving over the course of horizon

6 games. Subjects were well below optimal performance, but

gradually converged toward optimal throughout the course

of a horizon 6 game (see the Supplementary Material for an

explanation of how we computed optimal behavior).

Out of 39 subjects, the vast majority (34) achieved above

chance performance in both valence conditions and perfor-

mance in one condition was highly correlated with perfor-

mance in the other (Figure 3B). The five subjects whose

performance was at or below chance (as determined by Eq.

2) in one or both conditions were excluded from further

analysis.

3.2 Directed and random exploration are

equivalent for gains and losses, while un-

certainty seeking is increased for losses

To measure the extent of directed exploration, random ex-

ploration, and baseline uncertainty seeking we looked at

behavior on the first free-choice trial in the Horizon Task in

the gains and losses conditions. To give a more complete

picture of our data, and to illustrate the robustness of our

findings, we performed both a model-free and model-based

analysis of the behavior. The model-free analysis is much

simpler and is perhaps more intuitive, but comes at the cost

of reduced sensitivity and of ignoring variables. The model-

based analysis offers more detailed and quantitative insights

but at the cost of complexity. Our conclusions are similar for

both types of analyses, and some readers may wish to skip

the model-based results.

3.3 Model-free analysis

As outlined in the Methods section, we used two model-

free metrics to capture directed and random exploration.

We computed the fraction of trials in the [1 3] condition in

which subjects chose the more uncertain option, p(high info).

Because directed exploration involves information seeking,

we compared this value across horizons. That is, directed

exploration was measured as an increase in p(high info)

from horizon 1 to horizon 6, when the information gained

from selecting the more uncertain option is useful for future

choices. Likewise, because decision noise leads subjects

to make “mistakes” we quantified it as the probability of

choosing the low mean option in the [2 2] condition, p(low

mean). Random exploration was quantified as an increase in

p(low mean) from horizon 1 to horizon 6.
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Figure 4 — Model-free measures of directed and random exploration. (A) The fraction of trials in which subjects choose

the more uncertain option increases from horizon 1 to horizon 6, indicative of directed exploration. It also increases from gains

to losses, but this does not interact with the horizon condition. This is consistent with increased uncertainty seeking in losses,

but not a difference in directed exploration between gains and losses. (B) The decision noise (calculated as the fraction of

trials in which the low-mean option was chosen) increases from horizon 1 to horizon 6, indicative of random exploration. There

is no significant difference in decision noise between gains and losses. Data points are averaged across 34 subjects, with

error-bars indicating the standard error of the mean.

A repeated measures ANOVA found a significant increase

in p(high info) from horizon 1 to horizon 6 (F (1, 135) =

9.67, p = 0.0039), and from gains to losses (F (1, 135) =

6.00, p = 0.046, one-sided) (Figure 4A). There was no

interaction between the valence condition and the horizon

condition (F (1, 135) = 0.39, p = 0.54). The increase in

p(high info) with horizon is indicative of directed explo-

ration; when subjects are afforded extra trials to explore,

they are more likely to choose the more uncertain option in

order to gain information about it for future trials. The lack

of interaction between valence and horizon indicates that the

greater tendency to choose the more uncertain option with

losses does not vary across horizons. This horizon-invariant

shift towards choosing the uncertain option with losses is

consistent with an overall bias toward uncertainty-seeking

in the loss domain, but no difference in directed exploration

between gains and losses.

For random exploration, a repeated measures ANOVA

found a significant increase in p(low mean) from horizon 1 to

horizon 6 (F (1, 135) = 56.72, p < 10−8) and no significant

difference between gains and losses (F (1, 135) = 1.09, p =

0.30). This increase in decision noise from horizon 1 to

horizon 6 is indicative of random exploration as behavioral

variability increases when there is opportunity to explore.

3.4 Model-based analysis

To more precisely quantify our findings we used model fit-

ting. We estimated posterior distributions for all parameters

in the model for each subject in each condition, using hi-

erarchical Bayesian estimation. For simplicity we focus on

the group-level parameters that summarize the group means

of the information bonus, µAn , and decision noise, kσ
n /λ

σ
n .

These are shown in Figure 5, with error-bars indicating 95%

credible intervals. The spatial bias was near zero across all

conditions and is omitted.

Both the information bonus and the decision noise in-

creased from horizon 1 to horizon 6, in both valence con-

ditions, suggesting that subjects use directed and random

exploration for gains and for losses (information bonus and

decision noise increased from horizon 1 to horizon 6 in

99.98% and 100% of samples, respectively). Decision noise

was not reliably different between gains and losses (greater

for losses in 17.8% of samples), and decision noise was

greater in the [1 3] unequal uncertainty condition than the [2

2] equal uncertainty condition in 97.4% of samples.

The information bonus was different for gains and losses.

In particular there was an overall increase in the bonus in

the losses domain (in 98.7% of samples). Thus if we com-

pute the posterior over the difference between the bonus for

losses and gains in both horizon conditions (Figure 6) we see

approximately the same change between losses and gains in

both horizon 1 (losses > gains in 99.8% of samples) and

horizon 6 (losses > gains in 88.0% of samples) although

the distribution for horizon 6 is broader. The Bayes Factor

for our [model versus a model the included an additional

information bonus for the losses condition was 0.4997.

There was no interaction between valence and horizon

conditions as shown by the fact that the difference in the

posteriors for the weight on the more uncertain option in

horizon 6 and horizon 1 was identical for both gains and

losses (information bonus increased from horizon 1 to hori-

zon 6 in 99.8% of samples from the gains condition, and in

99.6% of samples from the losses condition.).
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Figure 6 — Posterior distributions showing the esti-

mated information bonus is greater for losses than for

gains. The difference between gains and losses in the pos-

terior distributions of the information bonus shows that the es-

timated information bonus is greater for losses than for gains.

This overall shift in the domain of losses is indicative of un-

certainty seeking with losses.

3.5 Uncertainty seeking in the losses condition

is consistent with Bayesian Shrinkage, not

Prospect Theory

The results of both the model-free and model-based analyses

revealed an overall bias toward the more uncertain option in

the domain of losses. This result is consistent with the clas-

sic predictions of Prospect Theory, in which humans seek

uncertainty in the domain of losses and avoid uncertainty

in the domain of gains. However, our results are also con-

sistent with a Bayesian interpretation that we refer to as the

“Bayesian Shrinkage” hypothesis. It should be noted that

this Bayesian Shrinkage hypothesis is referring metaphori-

cally to how people do inference, which is distinct from the

formal Bayesian statistical analyses presented in this paper

(Kruschke 2010; Lee 2011; Lee 2016).

The Bayesian Shrinkage hypothesis assumes that sub-

jects compute the expected value of each option, R, using

Bayesian inference with some prior. This prior has the effect

of biasing the estimated expected value towards the mean of

the prior — it “shrinks” the estimate towards the mean of

the prior. Because the effect of the prior is greater on more

uncertain options, increased uncertainty seeking in the do-

main of losses could simply reflect a more optimistic prior,

compared to the expectation of the gamble, for losses than

for gains.

Intriguingly, despite making similar qualitative predic-

tions about uncertainty seeking with losses, Prospect Theory

and Bayesian Shrinkage make different quantitative predic-

tions about the interaction between reward and uncertainty.

In the following sections, we describe these predictions in de-

tail and show how our results are consistent with the Bayesian

Shrinkage account.

3.6 Prospect Theory and Bayesian Shrinkage

make different predictions

Prospect Theory posits that the change in uncertainty prefer-

ence between gains and losses arises because of a change in

the curvature of the utility function from concave for gains

to convex for losses. As a result of concavity in the gain do-

main, the uncertainty in outcome causes the average of the

utility, 〈U (R)〉, to be less than the utility of the average out-

come, U (〈R〉) , and thus uncertain options are under-valued

(Figure 7A). Conversely, as a result of convexity in the loss

domain, uncertainty in outcome causes the average utility to

be greater than the utility of the average, and thus uncertain

options are over-valued. In both domains, the size of this un-

certainty effect on utility (i.e. |〈U (R)〉 −U (〈R〉) |) decreases

http://journal.sjdm.org/vol12.2.html


Judgment and Decision Making, Vol. 12, No. 2, March 2017 Strategies for exploration in the domain of losses 112

reward
-100 -50 0 50 100

ut
ili

ty

-2

-1

0

1

reward
-100 -50 0 50 100un

ce
rt

ai
nt

y 
ef

fe
ct

 o
n 

ut
ili

ty
U

(<
r>

) 
- 

<
U

(r
)>

-0.8

-0.4

0

0.4

reward
-100 -50 0 50 100

pr
ob

ab
ili

ty
 d

en
si

ty

gains prior
losses prior
likelihoods
posteriors

reward
-100 -50 0 50 100un

ce
rt

ai
nt

y 
ef

fe
ct

 o
n 

va
lu

e
R

po
st

-R
lik

-10

-5

0

5

10

15

A

C

B

D

Figure 7 - The interaction between reward and uncertainty according to Prospect Theory (A & B) and a Bayesian

Shrinkage hypothesis (C & D). (A) Under conditions of uncertainty about rewards, the average utility, 〈U (R)〉 (black dots),

will deviate below the utility of the actual average, U (〈R〉) (gray dots) in the domain of gains, and above the utility of the mean

in the domain of losses. (B) The difference |〈U (R)〉 − U (〈R〉) | is larger in magnitude closer to zero. As a result, Prospect

Theory predicts that for gains, the more uncertain option is more aversive than the less uncertain option for low-mean rewards,

and less aversive for high-mean rewards; for losses, the more uncertain option is more favorable for small negative losses,
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with the magnitude of the reward (Figure 7B). This implies a

positive relationship between reward and uncertainty seeking

for both gains and losses. As we explain next, the Bayesian

Shrinkage hypothesis makes the opposite prediction.

Bayesian Shrinkage explains the change in uncertainty

preference between gains and losses by appealing to differ-

ent prior distributions. If the prior for gains is pessimistic

and the prior for losses is optimistic, then these priors cause

uncertain options to be undervalued for gains and overvalued

for losses (Figure 7C). This in turn leads to uncertainty aver-

sion for gains and uncertainty seeking for losses. The size of

the Bayesian Shrinkage effect increases as a function of the

difference between the mean of the rewards and the mean of

the prior (Figure 7D). This implies a negative relationship

between reward and uncertainty seeking for both gains and

losses.

Thus, Prospect Theory and Bayesian Shrinkage make op-

posite predictions about the interaction between uncertainty

and reward. Specifically, Prospect Theory predicts an in-

crease in uncertainty seeking with reward, while Bayesian

Shrinkage predicts a decrease (Figure 7B, D). These predic-

tions are straightforward to test with our data.

3.7 Model-free and model-based analyses fa-

vor Bayesian Shrinkage over Prospect

Theory

To distinguish between Prospect Theory and Bayesian

Shrinkage in a model-free way, we computed p(high info)

separately for high and low reward magnitude trials. To do

this we took advantage of the fact that one of the bandits

always had a mean of magnitude either 40 or 60 points (see

Methods), while the mean of the other bandit was set rela-

tive to this. We therefore defined high-magnitude trials as

those in which the mean of the main bandit was ±60, and

low-magnitude trials as those in which the mean of the main

bandit was ±40. The null hypothesis asserts that p(high

info) will be independent of the reward level. Prospect The-

ory asserts that p(high info) will be positively correlated with

reward level. Thus, for losses, we expect to see less uncer-

tainty seeking in the –60 than –40 games, while for gains,

we expect less uncertainty seeking in +40 than +60 games.

The Bayesian Shrinkage hypothesis asserts that p(high info)

will be negatively correlated with mean reward, i.e. more

uncertainty seeking for –60 than –40 in the losses condition

and more uncertainty seeking for +40 than +60 in the gains

condition.

We computed p(high info) separately for the eight differ-

ent magnitude x horizon x valence conditions. The pattern

of behavior is consistent with the Bayesian Shrinkage hy-

pothesis with a negative relationship between mean reward

and p(high info) (Figure 8A, B). In particular a repeated-

measures ANOVA revealed a significant interaction between

the gains/losses condition, and the high/low-magnitude con-

dition (F (1, 135) = 10.40, p = 0.0029) in the model-free

analysis. There was still a main effect of the valence condi-

tion (F (1, 135) = 6.0, p = 0.046, one-sided), and of the hori-

zon condition (F (1, 135) = 9.67, p = 0.0039). There was no

main effect of the magnitude condition (F (1, 135) = 0.48,

p = 0.49) since it goes in opposite directions for gains and

losses. For the losses trials alone, there was a main ef-

fect of the low/high-magnitude condition (F (1, 135) = 5.92,

p = 0.020), and a trend to this main effect for gains trials

alone (F (1, 135) = 3.46, p = 0.072).

For the model-based analysis we added a single factor

to our model, an interaction term between uncertainty, ∆I,

and mean reward, M . This interaction term allows us to

determine whether people are more or less likely to choose

the more uncertain option as the mean reward increases and

thus distinguish between a Prospect Theory and Bayesian

Shrinkage account. More specifically, in this updated model

we rewrote the choice probabilities (Eq. 4) as

pa =
1

1 + exp(
∆R+A∆I+γM∆I+B√

2σ
)

(Eq. 5)

where γ denotes the strength of the interaction term and is

predicted to be positive by Prospect Theory and negative by

the Bayesian Shrinkage account.

As with the other variables in the model, we assume that

γ is sampled from a group-level prior distribution that is

potentially different for each subject and each condition. The

group-level priors are assumed to be Gaussian with mean µγ

and standard deviation σγ. Finally, the hyperparameters, µγ

and σγ, are themselves drawn from broad hyperpriors (see

Figure S1 for the graphical depiction of this model).

As before, we fit the model using a sampling based ap-

proach to compute posterior distributions for all parameters.

This clearly shows that the mean of the group-level prior,

µγ, is negative in all conditions (Figure 9) with 100% of

samples below zero apart from the horizon 6 gains condi-

tion where 95.4% of samples are below zero. As discussed

above, this negative value is inconsistent with Prospect The-

ory and provides strong support for the Bayesian Shrinkage

hypothesis.

This model that includes the interaction term was strongly

favored over the model without such a term, by 453 points

using the deviance information criterion (6,862 for the more

sophisticated model versus 7,315 for the more basic model,

across 34 subjects). This supports the notion that it is impor-

tant to account for the interaction between uncertainty and

reward.

4 Discussion

In this study we quantified the effects of reward valence

(gains vs. losses) on human explore-exploit decision making.

Consistent with our previous work (Wilson et al., 2014), we
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Figure 9 — Distribution of group-level mean of the mean

reward scale factor, µ
γ . In all conditions the µγ is less

than zero with high probability, providing strong support for

the Bayesian Shrinkage hypothesis.

found evidence that people use two distinct strategies for ex-

ploration: directed exploration in which exploration is driven

by an increase across horizons in information seeking, and

random exploration in which exploration is driven by deci-

sion noise that increases with horizon. Moreover, the extent

to which subjects used these two strategies was quantitatively

comparable in the gains and losses conditions.

In addition we found an overall increase in uncertainty

seeking in the domain of losses that initially appeared con-

sistent with the predictions of Prospect Theory (Kahneman

et al., 1979; Einhorn et al., 1986; Kahn et al., 1988; Tversky

et al., 1992; Di Mauro et al., 1996; Kuhn, 1997; Di Mauro

et al., 2002; Ho et al., 2002; Abdellaoui et al., 2005; Du

et al., 2005; Baucells et al., 2009; Chakravarty et al., 2009;

Davidovichet al., 2009). However, a more detailed, quantita-

tive analysis revealed an interaction between uncertainty and

reward magnitude that was inconsistent with Prospect The-

ory, but that could be explained with the Bayesian Shrinkage

hypothesis in which people have a prior that is optimistic for

losses and pessimistic for gains.

An obvious question is why do we see this departure from

Prospect Theory? One reason may be that, unlike classical

tests of Prospect Theory, the uncertainties in our task are

not explicitly described but instead must be inferred from

experience. A number of authors have found that decisions

based on described uncertainties can be quite different from

decisions based on uncertainties that are experienced (e.g.

Ludvig & Spetch, 2011; Hertwig et al., 2004; Barron &

Erev, 2003). However, it is important to note that recent

work looking at decisions under ambiguity do not see differ-

ences between gains and losses when the decision is made

under experience (Dutt et al., 2014; Guney & Newell, 2015).

Clearly more work will be required to understand why our

experiment gives different results.

One result from the description-experience literature that

is inline with our findings is the paper of Teodorescu & Erev

(2013) who used an explore-exploit task that combined both

gains and losses. In this experiment, the authors found be-

havior that was consistent with increased uncertainty seeking

for losses. However, because losses and gains were always

present together — i.e. there were no separate losses-only or

gains-only conditions — it was impossible to separate the

effects of losses from gains. Our work is also qualitatively

consistent with Lejarraga & Hertwig (2016) who found that

exploratory behavior in the loss domain was better explained

by a simple win-stay/lose-shift heuristic strategy than by loss

aversion. While our task, with continuously valued rewards,

is not well suited to studying win-stay/lose-shift behavior, it

will be important to reconcile these two findings in future

work. Finally, our work is consistent with Yechiam, Zahavi

& Arditi (2015) who found increased exploration in the do-

main of losses. Intriguingly, this latter paper also found a

hysteresis effect whereby past exposure to losses increased

exploration even when the losses where no longer present.

Such a long-term effect of past losses may be driven by the

“break-even” effect (Thaler & Johnson, 1990) whereby peo-

ple who have experienced a loss are more likely to choose

an uncertain option if it offers the chance to erase the past

loss. While our experiment did not offer any possibility of

breaking even in the losses condition, future work should

examine this idea more closely.

Another task that combines gains and losses in an explore-

exploit setting is the Iowa Gambling Task (IGT) (Bechara

et al., 1994). In this task, subjects choose between four

decks of cards. Each deck contains both winning and losing

cards and the relative amount of gains and losses varies

between decks such that two decks are winning on average

while the other two are losing. In recent years, a number

of authors have modeled behavior in this task in detail (e.g.

Wetzels et al., 2010; Worth et al., 2013). While the results

of these modeling efforts are not directly comparable with

our findings here, it would be interesting to include factors

for directed exploration and a Bayesian prior in models of

the IGT.

At the neural level, a question of particular interest for fu-

ture work is how these decisions are processed in the brain.

Neuroimaging studies have identified areas of the brain in-

volved in value-based decision making (Rangel, Camerer &

Montague, 2008; Christopoulos, Tobler, Bossaerts, Dolan

& Schultz, 2009; Hare, Camerer & Rangel, 2009; Kahnt,

Heinzle, Park & Haynes, 2011), the representation of mone-

tary gains versus losses (Breiter, Aharon, Kahneman, Dale &

Shizgal, 2001; Gehring & Willoughby, 2002; De Martino et

al., 2006; Yacubian et al., 2006; Seymour et al., 2007; Weller

et al., 2007; San Martín et al., 2013), and exploration versus

exploitation (Daw et al., 2006; Laureiro-Martínez, Brusoni

& Zollo, 2010; Badre, Doll, Long & Frank, 2012). In light

of our finding that directed exploration, random exploration,

and uncertainty seeking are independent, additive terms in

the value computation, neuroimaging could reveal whether

these brain regions also function in a summative way under

explore-exploit decisions.
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Finally, it is important to note that, despite being due

to uncertainty seeking rather than exploration, subjects did

choose the uncertain, and hence more informative option

more in the losses condition of our task. While this did

not lead to a significant difference in performance in our

experiment (Figure 3), it would be interesting to investigate

whether this bias for losses is advantageous in some settings,

or whether it is simply a suboptimal bias in human decision

making.
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