Estimating Continuous Distributions by Quantifying Errors in Probability Judgments

Asa B. Palley, Saurabh Bansal

Duke University, The Fuqua School of Business, Pennsylvania State University, Smeal College of Business

Accurately Estimating Uncertainties
is Critical to Making Good Decisions

- Inventory decisions with random product demand.

$$
q^{*}=F^{-1}\left(\frac{p-c}{p}\right)
$$

- Uncertain returns on investment portfolios.
- Distributions of task durations in project planning.

Eliciting Point Judgments
Expert provides set of judgments on the distribution $\left\{\left(\hat{x}_{i}, \hat{p}_{i}\right)\right\}_{i=1}^{N}$ such that $\hat{p}_{i}=\mathbb{P}\left(X \leq \hat{x}_{i}\right)$.
P_{1}

Considering Judgmental Errors

- Expert judgments may not be well-calibrated, and can display both over- and under-confidence.
- 80% CIs provided by financial executives for the stock market contain the realized market return only 36% of the time (Ben-David, Graham, \& Harvey, 2013).
90% CIs are over-confident, 70% CIs are well-calibrated, and 50% CIs are under-confident (Budescu \& Du, 2007).
- Bansal, Gutierrez, \& Keiser (2015) show benefits of accounting for errors in quantile judgments.

Overview of Approach
Estimate location and scale parameters $\theta_{1} \in \mathbb{R}$ and $\theta_{2} \in \mathbb{R}_{++}$of the distribution of X with standardized $\operatorname{CDF} \Phi(z)$ from the fixed values $\hat{\mathbf{x}}$ as a function

$$
\hat{\theta}_{j}=f(\hat{\mathbf{x}}, \hat{\mathbf{p}}, \mathcal{C})
$$

of the expert's assessments ($\hat{\mathbf{x}}, \hat{\mathbf{p}}$) and the structure \mathcal{C} of the expert's judgmental errors.

Calibration: Bias in p-domain
For $r=1,2, \ldots, R$ known distributions, select a set of fixed values $\hat{x}_{r 1}, \hat{x}_{r 2}, \ldots, \hat{x}_{r N}$ and elicit corresponding CDF judgments $\hat{p}_{r 1}, \hat{p}_{r 2}, \ldots, \hat{p}_{r N}$.

Estimate the parameters $\boldsymbol{\gamma}$ of the de-biasing curve $g(\cdot)$ using a scale-free model of judgment error:
$g(\hat{p} ; \boldsymbol{\gamma})=p+\psi$.

Calibration: Error in z-domain
Transform mean-zero residual errors ψ from the p domain to mean-zero residual errors ε in the z-domain

$$
\varepsilon_{i}=\underbrace{\Phi^{-1}\left(p_{i}\right)}_{z_{i}}-\underbrace{\Phi^{-1}\left(g\left(\hat{p}_{i}\right)\right)+\lambda\left(g\left(\hat{p}_{i}\right)\right)}_{\hat{z}_{i}} .
$$

$\lambda(\hat{p})$ is a bias correction to account for the change of domain. Cluster residual errors by their location in the distribution and estimate variance-covariance matrix Ω.

Optimal Weights

Proposition: Weights that minimize the variance in $\hat{\theta}_{j}=\mathbf{w}_{j}^{* T} \hat{\mathbf{x}}$ are given by

$$
\mathbf{w}_{j}^{* \mathrm{~T}}=\boldsymbol{a}_{j}\left(\hat{\mathbf{Z}} \Omega^{-1} \hat{\mathbf{Z}}^{\mathrm{T}}\right)^{-1} \hat{\mathbf{Z}} \Omega^{-1}
$$

where $\mathbf{a}_{1}=[1,0], \mathbf{a}_{2}=[0,1]$, and $\hat{\mathbf{Z}}=$
1
$\left[\Phi^{-1}\left(g\left(\hat{p}_{1}\right)\right)+\lambda\left(g\left(\hat{p}_{1}\right)\right) \cdots \Phi^{-1}\left(g\left(\hat{p}_{N}\right)\right)+\lambda\left(g\left(\hat{p}_{N}\right)\right)\right]$

Estimates Using Holdout Procedure
Estimating μ

- Average RMSE decreases by 16% (Direct curve-fitting=8.37 Calibrated weights=7.07, Direct video data $=5.35$). Average APE decreases by 19% (Direct curve-fitting=6.25\% Estimating σ
Average RMSE σ (Dese 53% (iting Average RMSE decreases by 53% (Direct curve-fitt
Calibrated weights=5.28, Direct video data $=2.64$).
Calibrated weights=5.28, Direct video data $=2.64$).
Average APE decreases by 51% (Direct curve-fitting $=36.4 \%$, Calibrated weights $=17.8 \%$, Direct video data $=9.7 \%$).

Discussion and Future Work

Proposed scale-free model to quantify judgment errors and a method for weighting judgments to estimate the parameters of a variable of interest. - Tested effectiveness of the method in an experiment found benefits for estimating the mean, very large improvements for estimating the standard deviation Ongoing Work

- Error-in-probabilities model works exactly analogously for combining quantile judgments. - Empirical comparison of quantile and probability elicitation modes both with and without calibration

References

[1] Ben-David, I., Graham, J. R., Harvey, C. R. 2013. Managerial miscalibration. Quarterly Journal of Economics, 1547-1584.
[2] Budescu, D. V., Du, N. 2007. Coherence and consistency of investors' probability judgments. Management Science 53(11), 1731-1744.
[3] Bansal, S., Gutierrez, G. J., Keiser, J. R. 2015. Using expert assessments to estimate probability distributions.
[4] Hossain, T., Okui, R. 2013. The binarized scoring rule Review of Economic Studies 80(3), 984-1001.

